Wavelet-Fourier Analysis of Audible Signals to Characterize the Vibrations in LSRA
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.6/8218 |
Resumo: | This paper proposes the analysis tools, the methodology, and the experimental setup to support the characterization of vibrations in linear switched reluctance actuators by analyzing the audio signals emitted. The analysis is performed by using two approaches: the windowed Fourier transform and the joint wavelet-Fourier which leads to a hybrid spectrum representation. The spectrum of the audible noise from the vibrations is characterized for different configurations of the actuator, and the spectral components are presented, analyzed and discussed. To evaluate the responses for these configurations, one uses either its frequency components, the spectral cross-correlation, and the Cross-Power Spectrum Density through the Welch periodogram. The reliability and the suitability of this approach are verified by comparing the experimental data with the outcomes from finite elements simulations. The proposed method enables the experimental identification of the critical vibration frequencies in LSRA. |
id |
RCAP_ae695ef08c167aa60d90e2b94a12cdab |
---|---|
oai_identifier_str |
oai:ubibliorum.ubi.pt:10400.6/8218 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Wavelet-Fourier Analysis of Audible Signals to Characterize the Vibrations in LSRALinear switched reluctance actuatorsVibrationsAcoustic noiseElectromagnetic forces rippleWavelet packets analysisHybrid spectrumThis paper proposes the analysis tools, the methodology, and the experimental setup to support the characterization of vibrations in linear switched reluctance actuators by analyzing the audio signals emitted. The analysis is performed by using two approaches: the windowed Fourier transform and the joint wavelet-Fourier which leads to a hybrid spectrum representation. The spectrum of the audible noise from the vibrations is characterized for different configurations of the actuator, and the spectral components are presented, analyzed and discussed. To evaluate the responses for these configurations, one uses either its frequency components, the spectral cross-correlation, and the Cross-Power Spectrum Density through the Welch periodogram. The reliability and the suitability of this approach are verified by comparing the experimental data with the outcomes from finite elements simulations. The proposed method enables the experimental identification of the critical vibration frequencies in LSRA.Institute of Electrical and Electronics EngineersuBibliorumSalvado, José António da CostaCalado, M. Do RosárioEspírito Santo, António2020-01-10T16:44:43Z2018-09-032018-09-03T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.6/8218eng10.1109/ICELMACH.2018.8506761metadata only accessinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-11-27T12:27:03Zoai:ubibliorum.ubi.pt:10400.6/8218Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-11-27T12:27:03Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Wavelet-Fourier Analysis of Audible Signals to Characterize the Vibrations in LSRA |
title |
Wavelet-Fourier Analysis of Audible Signals to Characterize the Vibrations in LSRA |
spellingShingle |
Wavelet-Fourier Analysis of Audible Signals to Characterize the Vibrations in LSRA Salvado, José António da Costa Linear switched reluctance actuators Vibrations Acoustic noise Electromagnetic forces ripple Wavelet packets analysis Hybrid spectrum |
title_short |
Wavelet-Fourier Analysis of Audible Signals to Characterize the Vibrations in LSRA |
title_full |
Wavelet-Fourier Analysis of Audible Signals to Characterize the Vibrations in LSRA |
title_fullStr |
Wavelet-Fourier Analysis of Audible Signals to Characterize the Vibrations in LSRA |
title_full_unstemmed |
Wavelet-Fourier Analysis of Audible Signals to Characterize the Vibrations in LSRA |
title_sort |
Wavelet-Fourier Analysis of Audible Signals to Characterize the Vibrations in LSRA |
author |
Salvado, José António da Costa |
author_facet |
Salvado, José António da Costa Calado, M. Do Rosário Espírito Santo, António |
author_role |
author |
author2 |
Calado, M. Do Rosário Espírito Santo, António |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
uBibliorum |
dc.contributor.author.fl_str_mv |
Salvado, José António da Costa Calado, M. Do Rosário Espírito Santo, António |
dc.subject.por.fl_str_mv |
Linear switched reluctance actuators Vibrations Acoustic noise Electromagnetic forces ripple Wavelet packets analysis Hybrid spectrum |
topic |
Linear switched reluctance actuators Vibrations Acoustic noise Electromagnetic forces ripple Wavelet packets analysis Hybrid spectrum |
description |
This paper proposes the analysis tools, the methodology, and the experimental setup to support the characterization of vibrations in linear switched reluctance actuators by analyzing the audio signals emitted. The analysis is performed by using two approaches: the windowed Fourier transform and the joint wavelet-Fourier which leads to a hybrid spectrum representation. The spectrum of the audible noise from the vibrations is characterized for different configurations of the actuator, and the spectral components are presented, analyzed and discussed. To evaluate the responses for these configurations, one uses either its frequency components, the spectral cross-correlation, and the Cross-Power Spectrum Density through the Welch periodogram. The reliability and the suitability of this approach are verified by comparing the experimental data with the outcomes from finite elements simulations. The proposed method enables the experimental identification of the critical vibration frequencies in LSRA. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-09-03 2018-09-03T00:00:00Z 2020-01-10T16:44:43Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.6/8218 |
url |
http://hdl.handle.net/10400.6/8218 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1109/ICELMACH.2018.8506761 |
dc.rights.driver.fl_str_mv |
metadata only access info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
metadata only access |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers |
publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
mluisa.alvim@gmail.com |
_version_ |
1817549631148523520 |