Deteção de enfarte do miocárdio através de redes neuronais convolucionais
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.14/33562 |
Resumo: | Introdução: As doenças cardiovasculares apresentam uma elevada taxa de mortalidade a nível mundial. O Eletrocardiograma (ECG) é o exame de primeira linha no que diz respeito ao diagnóstico deste tipo de patologias e consequentemente de extrema importância na correta e rápida interpretação para um prognóstico promissor. O Enfarte do Miocárdio (EM) é uma das alterações eletrocardiográficas que, detetadas atempadamente pode apresentar um impacto enorme a nível fisiológico e anatómico do próprio músculo cardíaco. A necessidade existente de uma tomada de decisão rápida e acertada, levou ao desenvolvimento de algoritmos capazes de detetar patologias no sinal eletrocardiográfico. Metodologia: Com o intuito de maximizar a capacidade discriminativa dos diferentes tipos de EM, foram extraídos padrões específicos do ECG para alimentar algoritmos de inteligência artificial. Por forma a tirar o melhor partido dos algoritmos de inteligência artificial foi realizado um préprocessamento de todo o sinal, seguido da seleção rigorosa de segmentos que apresentam a atividade patológica de cada doença. A seleção do segmento patológico para alimentar a Convolutional Neural Network (CNN) foi feita comparando os segmentos ao longo do tempo com as características modelo das sequências temporais do EM. Resultados: Os modelos da CNN, utilizados no presente estudo, apresentam níveis de precisão superiores a 97%, 99,39%, 99,64%, 97,76% e 98,98% para o EM Anterior, Anterolateral, Inferior e Inferolateral, respetivamente. Os resultados discriminativos promissores provam que a etapa de seleção dos segmentos modelo proporcionaram uma excelente triagem entre sequências temporais patológicas e não patológicas, estando a CNN preparada para detetar essa atividade patológica associada a cada uma das modalidades para a qual foi treinada, sempre que, lhe seja apresentado um novo sinal de ECG como entrada |
id |
RCAP_aea4c8a79c04c9762b82158715ffb918 |
---|---|
oai_identifier_str |
oai:repositorio.ucp.pt:10400.14/33562 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Deteção de enfarte do miocárdio através de redes neuronais convolucionaisEletrocardiogramaEnfarte do miocárdioCoeficiente de correlaçãoConvolutional neural networkValidação cruzadaElectrocardiogramMyocardial infarctionCorrelation coefficientConvolutional neural networkCrossed validationDomínio/Área Científica::Ciências Médicas::Biotecnologia MédicaIntrodução: As doenças cardiovasculares apresentam uma elevada taxa de mortalidade a nível mundial. O Eletrocardiograma (ECG) é o exame de primeira linha no que diz respeito ao diagnóstico deste tipo de patologias e consequentemente de extrema importância na correta e rápida interpretação para um prognóstico promissor. O Enfarte do Miocárdio (EM) é uma das alterações eletrocardiográficas que, detetadas atempadamente pode apresentar um impacto enorme a nível fisiológico e anatómico do próprio músculo cardíaco. A necessidade existente de uma tomada de decisão rápida e acertada, levou ao desenvolvimento de algoritmos capazes de detetar patologias no sinal eletrocardiográfico. Metodologia: Com o intuito de maximizar a capacidade discriminativa dos diferentes tipos de EM, foram extraídos padrões específicos do ECG para alimentar algoritmos de inteligência artificial. Por forma a tirar o melhor partido dos algoritmos de inteligência artificial foi realizado um préprocessamento de todo o sinal, seguido da seleção rigorosa de segmentos que apresentam a atividade patológica de cada doença. A seleção do segmento patológico para alimentar a Convolutional Neural Network (CNN) foi feita comparando os segmentos ao longo do tempo com as características modelo das sequências temporais do EM. Resultados: Os modelos da CNN, utilizados no presente estudo, apresentam níveis de precisão superiores a 97%, 99,39%, 99,64%, 97,76% e 98,98% para o EM Anterior, Anterolateral, Inferior e Inferolateral, respetivamente. Os resultados discriminativos promissores provam que a etapa de seleção dos segmentos modelo proporcionaram uma excelente triagem entre sequências temporais patológicas e não patológicas, estando a CNN preparada para detetar essa atividade patológica associada a cada uma das modalidades para a qual foi treinada, sempre que, lhe seja apresentado um novo sinal de ECG como entradaIntroduction: Cardiovascular diseases have a high mortality rate worldwide. The Electrocardiogram is the first-line exam in what concerns the diagnosis of this type of pathologies and, consequently, with extreme importance in the correct and immediate interpretation for a promising prognosis. Myocardial infarction is one of the electrocardiographic changes that detected in a timely manner can have a huge impact at the physiological and anatomical level of the cardiac muscle itself. The existing need for a fast and correct decision-making has led to the development of algorithms capable of detecting pathologies in the electrocardiographic signal. Methodology: In order to maximize the discriminative capacity of the different types of myocardial infarction, specific patterns have been extracted from the ECG signals to feed artificial intelligence algorithms. In order to make the best use of the artificial intelligence algorithms, a pre-processing of the entire signal was performed followed by a rigorous selection of the segments that show pathological activity for each disease. The pathological segment selection for feeding the CNN was made by comparing the segments over time with time-series-sequency model’s characteristic of myocardial infarction. Results: The precision values of the models used in the present study, presented accuracy levels above 97%, 99.39%, 99.64%, 97.76% and 98.98% for the Anterior, Anterolateral, Inferior and Inferolateral, respectively. The promising discriminative results prove that the segment model selection stage allow to perform an excellent screening of the pathological sequencies from the nonpathological time-series sequences and the CNN model is ready for detecting pathological activity over time as a new ECG signal is presented to its entries.Rodrigues, Pedro Miguel de LuísVeritati - Repositório Institucional da Universidade Católica PortuguesaSá, Joana Emília Costa2021-06-09T16:07:14Z2021-05-1020212021-05-10T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10400.14/33562TID:202729745porinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-12T17:39:03Zoai:repositorio.ucp.pt:10400.14/33562Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T18:27:09.411465Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Deteção de enfarte do miocárdio através de redes neuronais convolucionais |
title |
Deteção de enfarte do miocárdio através de redes neuronais convolucionais |
spellingShingle |
Deteção de enfarte do miocárdio através de redes neuronais convolucionais Sá, Joana Emília Costa Eletrocardiograma Enfarte do miocárdio Coeficiente de correlação Convolutional neural network Validação cruzada Electrocardiogram Myocardial infarction Correlation coefficient Convolutional neural network Crossed validation Domínio/Área Científica::Ciências Médicas::Biotecnologia Médica |
title_short |
Deteção de enfarte do miocárdio através de redes neuronais convolucionais |
title_full |
Deteção de enfarte do miocárdio através de redes neuronais convolucionais |
title_fullStr |
Deteção de enfarte do miocárdio através de redes neuronais convolucionais |
title_full_unstemmed |
Deteção de enfarte do miocárdio através de redes neuronais convolucionais |
title_sort |
Deteção de enfarte do miocárdio através de redes neuronais convolucionais |
author |
Sá, Joana Emília Costa |
author_facet |
Sá, Joana Emília Costa |
author_role |
author |
dc.contributor.none.fl_str_mv |
Rodrigues, Pedro Miguel de Luís Veritati - Repositório Institucional da Universidade Católica Portuguesa |
dc.contributor.author.fl_str_mv |
Sá, Joana Emília Costa |
dc.subject.por.fl_str_mv |
Eletrocardiograma Enfarte do miocárdio Coeficiente de correlação Convolutional neural network Validação cruzada Electrocardiogram Myocardial infarction Correlation coefficient Convolutional neural network Crossed validation Domínio/Área Científica::Ciências Médicas::Biotecnologia Médica |
topic |
Eletrocardiograma Enfarte do miocárdio Coeficiente de correlação Convolutional neural network Validação cruzada Electrocardiogram Myocardial infarction Correlation coefficient Convolutional neural network Crossed validation Domínio/Área Científica::Ciências Médicas::Biotecnologia Médica |
description |
Introdução: As doenças cardiovasculares apresentam uma elevada taxa de mortalidade a nível mundial. O Eletrocardiograma (ECG) é o exame de primeira linha no que diz respeito ao diagnóstico deste tipo de patologias e consequentemente de extrema importância na correta e rápida interpretação para um prognóstico promissor. O Enfarte do Miocárdio (EM) é uma das alterações eletrocardiográficas que, detetadas atempadamente pode apresentar um impacto enorme a nível fisiológico e anatómico do próprio músculo cardíaco. A necessidade existente de uma tomada de decisão rápida e acertada, levou ao desenvolvimento de algoritmos capazes de detetar patologias no sinal eletrocardiográfico. Metodologia: Com o intuito de maximizar a capacidade discriminativa dos diferentes tipos de EM, foram extraídos padrões específicos do ECG para alimentar algoritmos de inteligência artificial. Por forma a tirar o melhor partido dos algoritmos de inteligência artificial foi realizado um préprocessamento de todo o sinal, seguido da seleção rigorosa de segmentos que apresentam a atividade patológica de cada doença. A seleção do segmento patológico para alimentar a Convolutional Neural Network (CNN) foi feita comparando os segmentos ao longo do tempo com as características modelo das sequências temporais do EM. Resultados: Os modelos da CNN, utilizados no presente estudo, apresentam níveis de precisão superiores a 97%, 99,39%, 99,64%, 97,76% e 98,98% para o EM Anterior, Anterolateral, Inferior e Inferolateral, respetivamente. Os resultados discriminativos promissores provam que a etapa de seleção dos segmentos modelo proporcionaram uma excelente triagem entre sequências temporais patológicas e não patológicas, estando a CNN preparada para detetar essa atividade patológica associada a cada uma das modalidades para a qual foi treinada, sempre que, lhe seja apresentado um novo sinal de ECG como entrada |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-06-09T16:07:14Z 2021-05-10 2021 2021-05-10T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.14/33562 TID:202729745 |
url |
http://hdl.handle.net/10400.14/33562 |
identifier_str_mv |
TID:202729745 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799131988756529152 |