Multivariate GR&R through factor analysis
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/28230 |
Resumo: | Several measurement tasks present multivariate nature. In the cases with quality characteristics highly correlated within groups, but with a relatively small correlation between groups, the available multivariate GR&R methods are not suitable to provide a correct interpretation of the results. The present work presents a new multivariate GR&R approach through factor analysis. Factor analysis is a multivariate statistical method which focuses on the explanation of the covariance structure of the data. Through orthogonal rotation of the factors a suitable structure can be achieved with loadings easy to relate the variables to the factors. The proposed multivariate GR&R method through factor analysis is described and applied in the quality evaluation of holes obtained through helical milling process of AISI H13 hardened steel. The method succeeded in achieving a simple structure, with one factor related to the roughness outcomes and other related to the roundness ones, simplifying the gage capability evaluation. |
id |
RCAP_aecec385660cb956172e84d7768e9c8d |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/28230 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Multivariate GR&R through factor analysisMultivariate GR&RFactor analysisHelical millingRoughnessRoundnessSeveral measurement tasks present multivariate nature. In the cases with quality characteristics highly correlated within groups, but with a relatively small correlation between groups, the available multivariate GR&R methods are not suitable to provide a correct interpretation of the results. The present work presents a new multivariate GR&R approach through factor analysis. Factor analysis is a multivariate statistical method which focuses on the explanation of the covariance structure of the data. Through orthogonal rotation of the factors a suitable structure can be achieved with loadings easy to relate the variables to the factors. The proposed multivariate GR&R method through factor analysis is described and applied in the quality evaluation of holes obtained through helical milling process of AISI H13 hardened steel. The method succeeded in achieving a simple structure, with one factor related to the roughness outcomes and other related to the roundness ones, simplifying the gage capability evaluation.Elsevier2020-022020-02-01T00:00:00Z2021-02-28T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/28230eng0263-224110.1016/j.measurement.2019.107107Marques, Rafaela Aparecida MendonçaPereira, Robson Bruno DutraPeruchi, Rogério SantanaBrandão, Lincoln CardosoFerreira, João RobertoDavim, J. Pauloinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:54:37Zoai:ria.ua.pt:10773/28230Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:00:49.333672Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Multivariate GR&R through factor analysis |
title |
Multivariate GR&R through factor analysis |
spellingShingle |
Multivariate GR&R through factor analysis Marques, Rafaela Aparecida Mendonça Multivariate GR&R Factor analysis Helical milling Roughness Roundness |
title_short |
Multivariate GR&R through factor analysis |
title_full |
Multivariate GR&R through factor analysis |
title_fullStr |
Multivariate GR&R through factor analysis |
title_full_unstemmed |
Multivariate GR&R through factor analysis |
title_sort |
Multivariate GR&R through factor analysis |
author |
Marques, Rafaela Aparecida Mendonça |
author_facet |
Marques, Rafaela Aparecida Mendonça Pereira, Robson Bruno Dutra Peruchi, Rogério Santana Brandão, Lincoln Cardoso Ferreira, João Roberto Davim, J. Paulo |
author_role |
author |
author2 |
Pereira, Robson Bruno Dutra Peruchi, Rogério Santana Brandão, Lincoln Cardoso Ferreira, João Roberto Davim, J. Paulo |
author2_role |
author author author author author |
dc.contributor.author.fl_str_mv |
Marques, Rafaela Aparecida Mendonça Pereira, Robson Bruno Dutra Peruchi, Rogério Santana Brandão, Lincoln Cardoso Ferreira, João Roberto Davim, J. Paulo |
dc.subject.por.fl_str_mv |
Multivariate GR&R Factor analysis Helical milling Roughness Roundness |
topic |
Multivariate GR&R Factor analysis Helical milling Roughness Roundness |
description |
Several measurement tasks present multivariate nature. In the cases with quality characteristics highly correlated within groups, but with a relatively small correlation between groups, the available multivariate GR&R methods are not suitable to provide a correct interpretation of the results. The present work presents a new multivariate GR&R approach through factor analysis. Factor analysis is a multivariate statistical method which focuses on the explanation of the covariance structure of the data. Through orthogonal rotation of the factors a suitable structure can be achieved with loadings easy to relate the variables to the factors. The proposed multivariate GR&R method through factor analysis is described and applied in the quality evaluation of holes obtained through helical milling process of AISI H13 hardened steel. The method succeeded in achieving a simple structure, with one factor related to the roughness outcomes and other related to the roundness ones, simplifying the gage capability evaluation. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-02 2020-02-01T00:00:00Z 2021-02-28T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/28230 |
url |
http://hdl.handle.net/10773/28230 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0263-2241 10.1016/j.measurement.2019.107107 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137663852216320 |