Multivariate GR&R through factor analysis

Detalhes bibliográficos
Autor(a) principal: Marques, Rafaela Aparecida Mendonça
Data de Publicação: 2020
Outros Autores: Pereira, Robson Bruno Dutra, Peruchi, Rogério Santana, Brandão, Lincoln Cardoso, Ferreira, João Roberto, Davim, J. Paulo
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/28230
Resumo: Several measurement tasks present multivariate nature. In the cases with quality characteristics highly correlated within groups, but with a relatively small correlation between groups, the available multivariate GR&R methods are not suitable to provide a correct interpretation of the results. The present work presents a new multivariate GR&R approach through factor analysis. Factor analysis is a multivariate statistical method which focuses on the explanation of the covariance structure of the data. Through orthogonal rotation of the factors a suitable structure can be achieved with loadings easy to relate the variables to the factors. The proposed multivariate GR&R method through factor analysis is described and applied in the quality evaluation of holes obtained through helical milling process of AISI H13 hardened steel. The method succeeded in achieving a simple structure, with one factor related to the roughness outcomes and other related to the roundness ones, simplifying the gage capability evaluation.
id RCAP_aecec385660cb956172e84d7768e9c8d
oai_identifier_str oai:ria.ua.pt:10773/28230
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Multivariate GR&R through factor analysisMultivariate GR&RFactor analysisHelical millingRoughnessRoundnessSeveral measurement tasks present multivariate nature. In the cases with quality characteristics highly correlated within groups, but with a relatively small correlation between groups, the available multivariate GR&R methods are not suitable to provide a correct interpretation of the results. The present work presents a new multivariate GR&R approach through factor analysis. Factor analysis is a multivariate statistical method which focuses on the explanation of the covariance structure of the data. Through orthogonal rotation of the factors a suitable structure can be achieved with loadings easy to relate the variables to the factors. The proposed multivariate GR&R method through factor analysis is described and applied in the quality evaluation of holes obtained through helical milling process of AISI H13 hardened steel. The method succeeded in achieving a simple structure, with one factor related to the roughness outcomes and other related to the roundness ones, simplifying the gage capability evaluation.Elsevier2020-022020-02-01T00:00:00Z2021-02-28T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/28230eng0263-224110.1016/j.measurement.2019.107107Marques, Rafaela Aparecida MendonçaPereira, Robson Bruno DutraPeruchi, Rogério SantanaBrandão, Lincoln CardosoFerreira, João RobertoDavim, J. Pauloinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:54:37Zoai:ria.ua.pt:10773/28230Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:00:49.333672Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Multivariate GR&R through factor analysis
title Multivariate GR&R through factor analysis
spellingShingle Multivariate GR&R through factor analysis
Marques, Rafaela Aparecida Mendonça
Multivariate GR&R
Factor analysis
Helical milling
Roughness
Roundness
title_short Multivariate GR&R through factor analysis
title_full Multivariate GR&R through factor analysis
title_fullStr Multivariate GR&R through factor analysis
title_full_unstemmed Multivariate GR&R through factor analysis
title_sort Multivariate GR&R through factor analysis
author Marques, Rafaela Aparecida Mendonça
author_facet Marques, Rafaela Aparecida Mendonça
Pereira, Robson Bruno Dutra
Peruchi, Rogério Santana
Brandão, Lincoln Cardoso
Ferreira, João Roberto
Davim, J. Paulo
author_role author
author2 Pereira, Robson Bruno Dutra
Peruchi, Rogério Santana
Brandão, Lincoln Cardoso
Ferreira, João Roberto
Davim, J. Paulo
author2_role author
author
author
author
author
dc.contributor.author.fl_str_mv Marques, Rafaela Aparecida Mendonça
Pereira, Robson Bruno Dutra
Peruchi, Rogério Santana
Brandão, Lincoln Cardoso
Ferreira, João Roberto
Davim, J. Paulo
dc.subject.por.fl_str_mv Multivariate GR&R
Factor analysis
Helical milling
Roughness
Roundness
topic Multivariate GR&R
Factor analysis
Helical milling
Roughness
Roundness
description Several measurement tasks present multivariate nature. In the cases with quality characteristics highly correlated within groups, but with a relatively small correlation between groups, the available multivariate GR&R methods are not suitable to provide a correct interpretation of the results. The present work presents a new multivariate GR&R approach through factor analysis. Factor analysis is a multivariate statistical method which focuses on the explanation of the covariance structure of the data. Through orthogonal rotation of the factors a suitable structure can be achieved with loadings easy to relate the variables to the factors. The proposed multivariate GR&R method through factor analysis is described and applied in the quality evaluation of holes obtained through helical milling process of AISI H13 hardened steel. The method succeeded in achieving a simple structure, with one factor related to the roughness outcomes and other related to the roundness ones, simplifying the gage capability evaluation.
publishDate 2020
dc.date.none.fl_str_mv 2020-02
2020-02-01T00:00:00Z
2021-02-28T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/28230
url http://hdl.handle.net/10773/28230
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0263-2241
10.1016/j.measurement.2019.107107
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137663852216320