Improving numerical reasoning capabilities of inductive logic programming systems

Detalhes bibliográficos
Autor(a) principal: Alexessander Alves
Data de Publicação: 2004
Outros Autores: Rui Camacho, Eugénio Oliveira
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: https://hdl.handle.net/10216/67382
Resumo: Inductive Logic Programming (ILP) systems have been largely applied to classification problems with a considerable success. The use of ILP systems in problems requiring numerical reasoning capabilities has been far less successful. Current systems have very limited numerical reasoning capabilities, which limits the range of domains where the ILP paradigm may be applied. This paper proposes improvements in numerical reasoning capabilities of ILP systems. It proposes the use of statistical-based techniques like Model Validation and Model Selection to improve noise handling and it introduces a new search stopping criterium based on the PAG method to evaluate learning performance. We have found these extensions essential to improve on results mer statistical-based algorithms for time series forecasting used in the empirical evaluation study.
id RCAP_aed40a0dfd3522a6355bc1531d8b9343
oai_identifier_str oai:repositorio-aberto.up.pt:10216/67382
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Improving numerical reasoning capabilities of inductive logic programming systemsCiências da computação e da informaçãoComputer and information sciencesInductive Logic Programming (ILP) systems have been largely applied to classification problems with a considerable success. The use of ILP systems in problems requiring numerical reasoning capabilities has been far less successful. Current systems have very limited numerical reasoning capabilities, which limits the range of domains where the ILP paradigm may be applied. This paper proposes improvements in numerical reasoning capabilities of ILP systems. It proposes the use of statistical-based techniques like Model Validation and Model Selection to improve noise handling and it introduces a new search stopping criterium based on the PAG method to evaluate learning performance. We have found these extensions essential to improve on results mer statistical-based algorithms for time series forecasting used in the empirical evaluation study.20042004-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/10216/67382eng0302-9743Alexessander AlvesRui CamachoEugénio Oliveirainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-29T15:08:47Zoai:repositorio-aberto.up.pt:10216/67382Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T00:16:42.206787Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Improving numerical reasoning capabilities of inductive logic programming systems
title Improving numerical reasoning capabilities of inductive logic programming systems
spellingShingle Improving numerical reasoning capabilities of inductive logic programming systems
Alexessander Alves
Ciências da computação e da informação
Computer and information sciences
title_short Improving numerical reasoning capabilities of inductive logic programming systems
title_full Improving numerical reasoning capabilities of inductive logic programming systems
title_fullStr Improving numerical reasoning capabilities of inductive logic programming systems
title_full_unstemmed Improving numerical reasoning capabilities of inductive logic programming systems
title_sort Improving numerical reasoning capabilities of inductive logic programming systems
author Alexessander Alves
author_facet Alexessander Alves
Rui Camacho
Eugénio Oliveira
author_role author
author2 Rui Camacho
Eugénio Oliveira
author2_role author
author
dc.contributor.author.fl_str_mv Alexessander Alves
Rui Camacho
Eugénio Oliveira
dc.subject.por.fl_str_mv Ciências da computação e da informação
Computer and information sciences
topic Ciências da computação e da informação
Computer and information sciences
description Inductive Logic Programming (ILP) systems have been largely applied to classification problems with a considerable success. The use of ILP systems in problems requiring numerical reasoning capabilities has been far less successful. Current systems have very limited numerical reasoning capabilities, which limits the range of domains where the ILP paradigm may be applied. This paper proposes improvements in numerical reasoning capabilities of ILP systems. It proposes the use of statistical-based techniques like Model Validation and Model Selection to improve noise handling and it introduces a new search stopping criterium based on the PAG method to evaluate learning performance. We have found these extensions essential to improve on results mer statistical-based algorithms for time series forecasting used in the empirical evaluation study.
publishDate 2004
dc.date.none.fl_str_mv 2004
2004-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/10216/67382
url https://hdl.handle.net/10216/67382
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0302-9743
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799136087510089728