Impact of mesenchymal stem cells' secretome on glioblastoma pathophysiology

Detalhes bibliográficos
Autor(a) principal: Castro, Joana Vieira de
Data de Publicação: 2017
Outros Autores: Gomes, Eduardo Domingos Correia, Granja, Sara Costa, Anjo, Sandra I., Baltazar, Fátima, Bruno Manadas, Salgado, A. J., Costa, Bruno Marques
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/1822/49014
Resumo: Background: Glioblastoma (GBM) is a highly aggressive primary brain cancer, for which curative therapies are not available. An emerging therapeutic approach suggested to have potential to target malignant gliomas has been based on the use of multipotent mesenchymal stem cells (MSCs), either unmodified or engineered to deliver anticancer therapeutic agents, as these cells present an intrinsic capacity to migrate towards malignant tumors. Nevertheless, it is still controversial whether this innate tropism of MSCs towards the tumor area is associated with cancer promotion or suppression. Considering that one of the major mechanisms by which MSCs interact with and modulate tumor cells is via secreted factors, we studied how the secretome of MSCs modulates critical hallmark features of GBM cells. Methods: The effect of conditioned media (CM) from human umbilical cord perivascular cells (HUCPVCs, a MSC population present in the Wharton's jelly of the umbilical cord) on GBM cell viability, migration, proliferation and sensitivity to temozolomide treatment of U251 and SNB-19 GBM cells was evaluated. The in vivo chicken chorioallantoic membrane (CAM) assay was used to evaluate the effect of HUCPVCs CM on tumor growth and angiogenesis. The secretome of HUCPVCs was characterized by proteomic analyses. Results: We found that both tested GBM cell lines exposed to HUCPVCs CM presented significantly higher cellular viability, proliferation and migration. In contrast, resistance of GBM cells to temozolomide chemotherapy was not significantly affected by HUCPVCs CM. In the in vivo CAM assay, CM from HUCPVCs promoted U251 and SNB-19 tumor cells growth. Proteomic analysis to characterize the secretome of HUCPVCs identified several proteins involved in promotion of cell survival, proliferation and migration, revealing novel putative molecular mediators for the effects observed in GBM cells exposed to HUCPVCs CM. Conclusions: These findings provide novel insights to better understand the interplay between GBM cells and MSCs, raising awareness to potential safety issues regarding the use of MSCs as stem-cell based therapies for GBM.
id RCAP_af3598c6c173d896864c92062204325b
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/49014
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Impact of mesenchymal stem cells' secretome on glioblastoma pathophysiologyGlioblastomaMesenchymal stem cellsHuman umbilical cord perivascular cellsConditioned mediaSecretomeViabilityProliferationMigrationProteomicsScience & TechnologyBackground: Glioblastoma (GBM) is a highly aggressive primary brain cancer, for which curative therapies are not available. An emerging therapeutic approach suggested to have potential to target malignant gliomas has been based on the use of multipotent mesenchymal stem cells (MSCs), either unmodified or engineered to deliver anticancer therapeutic agents, as these cells present an intrinsic capacity to migrate towards malignant tumors. Nevertheless, it is still controversial whether this innate tropism of MSCs towards the tumor area is associated with cancer promotion or suppression. Considering that one of the major mechanisms by which MSCs interact with and modulate tumor cells is via secreted factors, we studied how the secretome of MSCs modulates critical hallmark features of GBM cells. Methods: The effect of conditioned media (CM) from human umbilical cord perivascular cells (HUCPVCs, a MSC population present in the Wharton's jelly of the umbilical cord) on GBM cell viability, migration, proliferation and sensitivity to temozolomide treatment of U251 and SNB-19 GBM cells was evaluated. The in vivo chicken chorioallantoic membrane (CAM) assay was used to evaluate the effect of HUCPVCs CM on tumor growth and angiogenesis. The secretome of HUCPVCs was characterized by proteomic analyses. Results: We found that both tested GBM cell lines exposed to HUCPVCs CM presented significantly higher cellular viability, proliferation and migration. In contrast, resistance of GBM cells to temozolomide chemotherapy was not significantly affected by HUCPVCs CM. In the in vivo CAM assay, CM from HUCPVCs promoted U251 and SNB-19 tumor cells growth. Proteomic analysis to characterize the secretome of HUCPVCs identified several proteins involved in promotion of cell survival, proliferation and migration, revealing novel putative molecular mediators for the effects observed in GBM cells exposed to HUCPVCs CM. Conclusions: These findings provide novel insights to better understand the interplay between GBM cells and MSCs, raising awareness to potential safety issues regarding the use of MSCs as stem-cell based therapies for GBM.The authors would like to acknowledge the funding agencies that supported this work: Fundacao para a Ciencia e Tecnologia (FCT), Portugal, projects reference: PTDC/SAU-GMG/113795/2009 (BMC); SFRH/BD/88121/2012 (JVdC); SFRH/BD/103075/2014 (EDG); IF/00601/2012 (BMC); IF/00111/2013 (AJS); SFRH/BD/81495/2011 (SIA); PTDC/NEU-NMC/0205/2012, PTDC/NEUSCC/ 7051/2014, PEst-C/SAU/LA0001/2013-2014 and UID/NEU/04539/2013 (BM); Fundacao Calouste Gulbenkian (BMC); Liga Portuguesa Contra o Cancro (BMC); " COMPETE Programa Operacional Factores de Competitividade, QREN, the European Union (FEDER-Fundo Europeu de Desenvolvimento Regional) and by The National Mass Spectrometry Network (RNEM) under the contract REDE/1506/REM/2005; FEDER funds, through the Competitiveness Factors Operational Programme (COMPETE), and by National funds, through the Foundation for Science and Technology (FCT), under the scope of the project POCI-01-0145-FEDER-007038; and project NORTE-01-0145-FEDER-000013, supported by the Northern Portugal Regional Operational Programme (NORTE 2020), under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (FEDER). The funding body did not have a role in the design of the study, in collection, analysis or interpretation of data, or in writing the manuscript.BioMed Central (BMC)Universidade do MinhoCastro, Joana Vieira deGomes, Eduardo Domingos CorreiaGranja, Sara CostaAnjo, Sandra I.Baltazar, FátimaBruno ManadasSalgado, A. J.Costa, Bruno Marques20172017-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/49014eng1479-587610.1186/s12967-017-1303-828969635https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5625623/info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:43:31Zoai:repositorium.sdum.uminho.pt:1822/49014Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:41:01.487558Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Impact of mesenchymal stem cells' secretome on glioblastoma pathophysiology
title Impact of mesenchymal stem cells' secretome on glioblastoma pathophysiology
spellingShingle Impact of mesenchymal stem cells' secretome on glioblastoma pathophysiology
Castro, Joana Vieira de
Glioblastoma
Mesenchymal stem cells
Human umbilical cord perivascular cells
Conditioned media
Secretome
Viability
Proliferation
Migration
Proteomics
Science & Technology
title_short Impact of mesenchymal stem cells' secretome on glioblastoma pathophysiology
title_full Impact of mesenchymal stem cells' secretome on glioblastoma pathophysiology
title_fullStr Impact of mesenchymal stem cells' secretome on glioblastoma pathophysiology
title_full_unstemmed Impact of mesenchymal stem cells' secretome on glioblastoma pathophysiology
title_sort Impact of mesenchymal stem cells' secretome on glioblastoma pathophysiology
author Castro, Joana Vieira de
author_facet Castro, Joana Vieira de
Gomes, Eduardo Domingos Correia
Granja, Sara Costa
Anjo, Sandra I.
Baltazar, Fátima
Bruno Manadas
Salgado, A. J.
Costa, Bruno Marques
author_role author
author2 Gomes, Eduardo Domingos Correia
Granja, Sara Costa
Anjo, Sandra I.
Baltazar, Fátima
Bruno Manadas
Salgado, A. J.
Costa, Bruno Marques
author2_role author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Castro, Joana Vieira de
Gomes, Eduardo Domingos Correia
Granja, Sara Costa
Anjo, Sandra I.
Baltazar, Fátima
Bruno Manadas
Salgado, A. J.
Costa, Bruno Marques
dc.subject.por.fl_str_mv Glioblastoma
Mesenchymal stem cells
Human umbilical cord perivascular cells
Conditioned media
Secretome
Viability
Proliferation
Migration
Proteomics
Science & Technology
topic Glioblastoma
Mesenchymal stem cells
Human umbilical cord perivascular cells
Conditioned media
Secretome
Viability
Proliferation
Migration
Proteomics
Science & Technology
description Background: Glioblastoma (GBM) is a highly aggressive primary brain cancer, for which curative therapies are not available. An emerging therapeutic approach suggested to have potential to target malignant gliomas has been based on the use of multipotent mesenchymal stem cells (MSCs), either unmodified or engineered to deliver anticancer therapeutic agents, as these cells present an intrinsic capacity to migrate towards malignant tumors. Nevertheless, it is still controversial whether this innate tropism of MSCs towards the tumor area is associated with cancer promotion or suppression. Considering that one of the major mechanisms by which MSCs interact with and modulate tumor cells is via secreted factors, we studied how the secretome of MSCs modulates critical hallmark features of GBM cells. Methods: The effect of conditioned media (CM) from human umbilical cord perivascular cells (HUCPVCs, a MSC population present in the Wharton's jelly of the umbilical cord) on GBM cell viability, migration, proliferation and sensitivity to temozolomide treatment of U251 and SNB-19 GBM cells was evaluated. The in vivo chicken chorioallantoic membrane (CAM) assay was used to evaluate the effect of HUCPVCs CM on tumor growth and angiogenesis. The secretome of HUCPVCs was characterized by proteomic analyses. Results: We found that both tested GBM cell lines exposed to HUCPVCs CM presented significantly higher cellular viability, proliferation and migration. In contrast, resistance of GBM cells to temozolomide chemotherapy was not significantly affected by HUCPVCs CM. In the in vivo CAM assay, CM from HUCPVCs promoted U251 and SNB-19 tumor cells growth. Proteomic analysis to characterize the secretome of HUCPVCs identified several proteins involved in promotion of cell survival, proliferation and migration, revealing novel putative molecular mediators for the effects observed in GBM cells exposed to HUCPVCs CM. Conclusions: These findings provide novel insights to better understand the interplay between GBM cells and MSCs, raising awareness to potential safety issues regarding the use of MSCs as stem-cell based therapies for GBM.
publishDate 2017
dc.date.none.fl_str_mv 2017
2017-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1822/49014
url http://hdl.handle.net/1822/49014
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1479-5876
10.1186/s12967-017-1303-8
28969635
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5625623/
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv BioMed Central (BMC)
publisher.none.fl_str_mv BioMed Central (BMC)
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799132957829496832