Managing through a pandemic : ex-ante earnings uncertainty and income-decreasing earnings manipulation in 2020
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.14/35383 |
Resumo: | The realization that economic conditions can affect the value-relevance of reported earnings has motivated a series of contextual studies in the field of earnings management. Less than one year after the first reported case of COVID-19 in the U.S., this thesis investigates how and why the magnitude and direction of income manipulation by North American firms changed in 2020. This study is split into a univariate analysis and a regression analysis part. In the former I run expectation models for normal accruals within each industry-quarter and proxy for accruals management through the regression residuals. The significance of the difference in the magnitude of abnormal / discretionary accruals between the comparison period (2018-2019) and the crisis period (2020) is estimated through a bootstrap procedure. In the latter I regress discretionary accruals against a proxy for high-order uncertainty (dispersion in analyst forecasts) in both the comparison period and the crisis period. First, I find that 2020 brought about a significant increase in the magnitude of income-decreasing manipulation (relative to the comparison period, firms underreported earnings by a greater percentage of assets in 2020). Second, I find that in 2020 higher ex-ante earnings uncertainty levels are correlated with higher absolute negative discretionary accruals (associated to income-decreasing manipulation). Third, I conclude that the underreporting trend in 2020 is at least partially explained by earnings shifting incentives since the effect of positive surprises on announcement returns is significantly mitigated by ex-ante earnings uncertainty. |
id |
RCAP_afafd052462d06ae2a95e930570c0b8a |
---|---|
oai_identifier_str |
oai:repositorio.ucp.pt:10400.14/35383 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Managing through a pandemic : ex-ante earnings uncertainty and income-decreasing earnings manipulation in 2020Earnings managementAccruals managementEx-ante earnings uncertaintyEarnings response coefficientsEarnings surpriseManipulação de resultadosAcréscimosIncerteza económicaCoeficientes de resposta de ganhosSurpresas positivasDomínio/Área Científica::Ciências Sociais::Economia e GestãoThe realization that economic conditions can affect the value-relevance of reported earnings has motivated a series of contextual studies in the field of earnings management. Less than one year after the first reported case of COVID-19 in the U.S., this thesis investigates how and why the magnitude and direction of income manipulation by North American firms changed in 2020. This study is split into a univariate analysis and a regression analysis part. In the former I run expectation models for normal accruals within each industry-quarter and proxy for accruals management through the regression residuals. The significance of the difference in the magnitude of abnormal / discretionary accruals between the comparison period (2018-2019) and the crisis period (2020) is estimated through a bootstrap procedure. In the latter I regress discretionary accruals against a proxy for high-order uncertainty (dispersion in analyst forecasts) in both the comparison period and the crisis period. First, I find that 2020 brought about a significant increase in the magnitude of income-decreasing manipulation (relative to the comparison period, firms underreported earnings by a greater percentage of assets in 2020). Second, I find that in 2020 higher ex-ante earnings uncertainty levels are correlated with higher absolute negative discretionary accruals (associated to income-decreasing manipulation). Third, I conclude that the underreporting trend in 2020 is at least partially explained by earnings shifting incentives since the effect of positive surprises on announcement returns is significantly mitigated by ex-ante earnings uncertainty.O entendimento de que as condições económicas têm o potencial de afetar o valor da informação contida nos relatórios financeiros fomentou o desenvolvimento de estudos contextuais na área de manipulação de resultados. Menos de um ano após o registo do primeiro caso de COVID-19 nos U.S., esta tese investiga de que forma a magnitude e sentido da tendência de manipulação de resultados por empresas Norte Americanas sofreu alterações em 2020. Este estudo inclui uma análise univariada e uma análise de regressão. A primeira consiste em calcular acréscimos discricionários através dos resíduos resultantes da estimativa de um modelo de acréscimos e diferimentos transversalmente. A significância da diferença na magnitude dos acréscimos discricionários entre o período referência (2018-2019) e o período crise (2020) é estimada através de um procedimento de bootstrap. A segunda análise procura estabelecer uma relação entre acréscimos discricionários e o nível de incerteza económica (aproximado pelo desvio padrão das previsões dos analistas) nos períodos de referência e crise. Primeiro, os resultados sugerem um aumento na magnitude da atividade manipulativa que procura minimizar/depreciar ganhos nos primeiros dois trimestres de 2020 (relativamente aos homólogos do período referência). Segundo, os resultados sugerem que em 2020 níveis elevados de incerteza ex-ante dos ganhos estão positivamente correlacionados com níveis elevados de acréscimos discricionários negativos (valor absoluto). Terceiro, concluo que a tendência de minimização de resultados em 2020 é parcialmente explicada por incentivos de shifting de ganhos motivados pelo papel mitigador da incerteza no efeito de surpresas positivas nos coeficientes de resposta de ganhos (ERCs).Kalogirou, FaniVeritati - Repositório Institucional da Universidade Católica PortuguesaCarvalho, Leonor Moreira de2021-10-04T13:18:33Z2021-04-282021-012021-04-28T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10400.14/35383TID:202728854enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-12T17:40:53Zoai:repositorio.ucp.pt:10400.14/35383Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T18:28:43.885851Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Managing through a pandemic : ex-ante earnings uncertainty and income-decreasing earnings manipulation in 2020 |
title |
Managing through a pandemic : ex-ante earnings uncertainty and income-decreasing earnings manipulation in 2020 |
spellingShingle |
Managing through a pandemic : ex-ante earnings uncertainty and income-decreasing earnings manipulation in 2020 Carvalho, Leonor Moreira de Earnings management Accruals management Ex-ante earnings uncertainty Earnings response coefficients Earnings surprise Manipulação de resultados Acréscimos Incerteza económica Coeficientes de resposta de ganhos Surpresas positivas Domínio/Área Científica::Ciências Sociais::Economia e Gestão |
title_short |
Managing through a pandemic : ex-ante earnings uncertainty and income-decreasing earnings manipulation in 2020 |
title_full |
Managing through a pandemic : ex-ante earnings uncertainty and income-decreasing earnings manipulation in 2020 |
title_fullStr |
Managing through a pandemic : ex-ante earnings uncertainty and income-decreasing earnings manipulation in 2020 |
title_full_unstemmed |
Managing through a pandemic : ex-ante earnings uncertainty and income-decreasing earnings manipulation in 2020 |
title_sort |
Managing through a pandemic : ex-ante earnings uncertainty and income-decreasing earnings manipulation in 2020 |
author |
Carvalho, Leonor Moreira de |
author_facet |
Carvalho, Leonor Moreira de |
author_role |
author |
dc.contributor.none.fl_str_mv |
Kalogirou, Fani Veritati - Repositório Institucional da Universidade Católica Portuguesa |
dc.contributor.author.fl_str_mv |
Carvalho, Leonor Moreira de |
dc.subject.por.fl_str_mv |
Earnings management Accruals management Ex-ante earnings uncertainty Earnings response coefficients Earnings surprise Manipulação de resultados Acréscimos Incerteza económica Coeficientes de resposta de ganhos Surpresas positivas Domínio/Área Científica::Ciências Sociais::Economia e Gestão |
topic |
Earnings management Accruals management Ex-ante earnings uncertainty Earnings response coefficients Earnings surprise Manipulação de resultados Acréscimos Incerteza económica Coeficientes de resposta de ganhos Surpresas positivas Domínio/Área Científica::Ciências Sociais::Economia e Gestão |
description |
The realization that economic conditions can affect the value-relevance of reported earnings has motivated a series of contextual studies in the field of earnings management. Less than one year after the first reported case of COVID-19 in the U.S., this thesis investigates how and why the magnitude and direction of income manipulation by North American firms changed in 2020. This study is split into a univariate analysis and a regression analysis part. In the former I run expectation models for normal accruals within each industry-quarter and proxy for accruals management through the regression residuals. The significance of the difference in the magnitude of abnormal / discretionary accruals between the comparison period (2018-2019) and the crisis period (2020) is estimated through a bootstrap procedure. In the latter I regress discretionary accruals against a proxy for high-order uncertainty (dispersion in analyst forecasts) in both the comparison period and the crisis period. First, I find that 2020 brought about a significant increase in the magnitude of income-decreasing manipulation (relative to the comparison period, firms underreported earnings by a greater percentage of assets in 2020). Second, I find that in 2020 higher ex-ante earnings uncertainty levels are correlated with higher absolute negative discretionary accruals (associated to income-decreasing manipulation). Third, I conclude that the underreporting trend in 2020 is at least partially explained by earnings shifting incentives since the effect of positive surprises on announcement returns is significantly mitigated by ex-ante earnings uncertainty. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-10-04T13:18:33Z 2021-04-28 2021-01 2021-04-28T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.14/35383 TID:202728854 |
url |
http://hdl.handle.net/10400.14/35383 |
identifier_str_mv |
TID:202728854 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799132006571835392 |