Roadmap on artificial intelligence and big data techniques for superconductivity

Detalhes bibliográficos
Autor(a) principal: Yazdani-Asrami, Mohammad
Data de Publicação: 2023
Outros Autores: Song, Wenjuan, Morandi, Antonio, de Carne, Giovanni, Murta-Pina, João, Pronto, Anabela, Oliveira, Roberto, Grilli, Francesco, Pardo, Enric, Parizh, Michael, Shen, Boyang, Coombs, Tim, Salmi, Tiina, Wu, Di, Coatanea, Eric, Moseley, Dominic A., Badcock, Rodney A., Zhang, Mengjie, Marinozzi, Vittorio, Tran, Nhan, Wielgosz, Maciej, Skoczeń, Andrzej, Tzelepis, Dimitrios, Meliopoulos, Sakis, Vilhena, Nuno, Sotelo, Guilherme, Jiang, Zhenan, Große, Veit, Bagni, Tommaso, Mauro, Diego, Senatore, Carmine, Mankevich, Alexey, Amelichev, Vadim, Samoilenkov, Sergey, Yoon, Tiem Leong, Wang, Yao, Camata, Renato P., Chen, Cheng Chien, Madureira, Ana Maria, Abraham, Ajith
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10362/155114
Resumo: Funding Information: Financial support was provided by the Swiss National Science Foundation (Grant No. 200021_184940). Funding Information: Networking support provided by the European Cooperation in Science and Technology, COST Action CA19108 (Hi-SCALE) is acknowledged. Funding Information: A part of this work was supported by the Russian National Technology Initiative Foundation (Grant ID 0000000007418QR20002). Funding Information: The research was also supported by the European Synchrotron Radiation Facility (Grant No. MA-2767). Funding Information: This work was supported in part by the New Zealand Ministry of Business, Innovation and Employment (MBIE) by the Strategic Science Investment Fund ‘‘Advanced Energy Technology Platforms’’ under Contract RTVU2004. Funding Information: Y Wang acknowledges support from the National Science Foundation (NSF) Award DMR-2132338. R P Camata and C-C Chen are supported by the FTPP Program funded by NSF EPSCoR RII Track-1 Cooperative Agreement OIA-2148653. C-C Chen also acknowledges support from the NSF Award DMR-2142801. Publisher Copyright: © 2023 The Author(s). Published by IOP Publishing Ltd.
id RCAP_b099de23df4be99c6f102f712c9dec3a
oai_identifier_str oai:run.unl.pt:10362/155114
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Roadmap on artificial intelligence and big data techniques for superconductivityapplied superconductivityartificial intelligencebig datadeep learningmachine learningneural networkCeramics and CompositesCondensed Matter PhysicsMetals and AlloysElectrical and Electronic EngineeringMaterials ChemistryFunding Information: Financial support was provided by the Swiss National Science Foundation (Grant No. 200021_184940). Funding Information: Networking support provided by the European Cooperation in Science and Technology, COST Action CA19108 (Hi-SCALE) is acknowledged. Funding Information: A part of this work was supported by the Russian National Technology Initiative Foundation (Grant ID 0000000007418QR20002). Funding Information: The research was also supported by the European Synchrotron Radiation Facility (Grant No. MA-2767). Funding Information: This work was supported in part by the New Zealand Ministry of Business, Innovation and Employment (MBIE) by the Strategic Science Investment Fund ‘‘Advanced Energy Technology Platforms’’ under Contract RTVU2004. Funding Information: Y Wang acknowledges support from the National Science Foundation (NSF) Award DMR-2132338. R P Camata and C-C Chen are supported by the FTPP Program funded by NSF EPSCoR RII Track-1 Cooperative Agreement OIA-2148653. C-C Chen also acknowledges support from the NSF Award DMR-2142801. Publisher Copyright: © 2023 The Author(s). Published by IOP Publishing Ltd.This paper presents a roadmap to the application of AI techniques and big data (BD) for different modelling, design, monitoring, manufacturing and operation purposes of different superconducting applications. To help superconductivity researchers, engineers, and manufacturers understand the viability of using AI and BD techniques as future solutions for challenges in superconductivity, a series of short articles are presented to outline some of the potential applications and solutions. These potential futuristic routes and their materials/technologies are considered for a 10-20 yr time-frame.UNINOVA-Instituto de Desenvolvimento de Novas TecnologiasCTS - Centro de Tecnologia e SistemasRUNYazdani-Asrami, MohammadSong, WenjuanMorandi, Antoniode Carne, GiovanniMurta-Pina, JoãoPronto, AnabelaOliveira, RobertoGrilli, FrancescoPardo, EnricParizh, MichaelShen, BoyangCoombs, TimSalmi, TiinaWu, DiCoatanea, EricMoseley, Dominic A.Badcock, Rodney A.Zhang, MengjieMarinozzi, VittorioTran, NhanWielgosz, MaciejSkoczeń, AndrzejTzelepis, DimitriosMeliopoulos, SakisVilhena, NunoSotelo, GuilhermeJiang, ZhenanGroße, VeitBagni, TommasoMauro, DiegoSenatore, CarmineMankevich, AlexeyAmelichev, VadimSamoilenkov, SergeyYoon, Tiem LeongWang, YaoCamata, Renato P.Chen, Cheng ChienMadureira, Ana MariaAbraham, Ajith2023-07-11T22:23:12Z2023-042023-04-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article58application/pdfhttp://hdl.handle.net/10362/155114eng0953-2048PURE: 65902268https://doi.org/10.1088/1361-6668/acbb34info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:37:35Zoai:run.unl.pt:10362/155114Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:55:55.184879Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Roadmap on artificial intelligence and big data techniques for superconductivity
title Roadmap on artificial intelligence and big data techniques for superconductivity
spellingShingle Roadmap on artificial intelligence and big data techniques for superconductivity
Yazdani-Asrami, Mohammad
applied superconductivity
artificial intelligence
big data
deep learning
machine learning
neural network
Ceramics and Composites
Condensed Matter Physics
Metals and Alloys
Electrical and Electronic Engineering
Materials Chemistry
title_short Roadmap on artificial intelligence and big data techniques for superconductivity
title_full Roadmap on artificial intelligence and big data techniques for superconductivity
title_fullStr Roadmap on artificial intelligence and big data techniques for superconductivity
title_full_unstemmed Roadmap on artificial intelligence and big data techniques for superconductivity
title_sort Roadmap on artificial intelligence and big data techniques for superconductivity
author Yazdani-Asrami, Mohammad
author_facet Yazdani-Asrami, Mohammad
Song, Wenjuan
Morandi, Antonio
de Carne, Giovanni
Murta-Pina, João
Pronto, Anabela
Oliveira, Roberto
Grilli, Francesco
Pardo, Enric
Parizh, Michael
Shen, Boyang
Coombs, Tim
Salmi, Tiina
Wu, Di
Coatanea, Eric
Moseley, Dominic A.
Badcock, Rodney A.
Zhang, Mengjie
Marinozzi, Vittorio
Tran, Nhan
Wielgosz, Maciej
Skoczeń, Andrzej
Tzelepis, Dimitrios
Meliopoulos, Sakis
Vilhena, Nuno
Sotelo, Guilherme
Jiang, Zhenan
Große, Veit
Bagni, Tommaso
Mauro, Diego
Senatore, Carmine
Mankevich, Alexey
Amelichev, Vadim
Samoilenkov, Sergey
Yoon, Tiem Leong
Wang, Yao
Camata, Renato P.
Chen, Cheng Chien
Madureira, Ana Maria
Abraham, Ajith
author_role author
author2 Song, Wenjuan
Morandi, Antonio
de Carne, Giovanni
Murta-Pina, João
Pronto, Anabela
Oliveira, Roberto
Grilli, Francesco
Pardo, Enric
Parizh, Michael
Shen, Boyang
Coombs, Tim
Salmi, Tiina
Wu, Di
Coatanea, Eric
Moseley, Dominic A.
Badcock, Rodney A.
Zhang, Mengjie
Marinozzi, Vittorio
Tran, Nhan
Wielgosz, Maciej
Skoczeń, Andrzej
Tzelepis, Dimitrios
Meliopoulos, Sakis
Vilhena, Nuno
Sotelo, Guilherme
Jiang, Zhenan
Große, Veit
Bagni, Tommaso
Mauro, Diego
Senatore, Carmine
Mankevich, Alexey
Amelichev, Vadim
Samoilenkov, Sergey
Yoon, Tiem Leong
Wang, Yao
Camata, Renato P.
Chen, Cheng Chien
Madureira, Ana Maria
Abraham, Ajith
author2_role author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv UNINOVA-Instituto de Desenvolvimento de Novas Tecnologias
CTS - Centro de Tecnologia e Sistemas
RUN
dc.contributor.author.fl_str_mv Yazdani-Asrami, Mohammad
Song, Wenjuan
Morandi, Antonio
de Carne, Giovanni
Murta-Pina, João
Pronto, Anabela
Oliveira, Roberto
Grilli, Francesco
Pardo, Enric
Parizh, Michael
Shen, Boyang
Coombs, Tim
Salmi, Tiina
Wu, Di
Coatanea, Eric
Moseley, Dominic A.
Badcock, Rodney A.
Zhang, Mengjie
Marinozzi, Vittorio
Tran, Nhan
Wielgosz, Maciej
Skoczeń, Andrzej
Tzelepis, Dimitrios
Meliopoulos, Sakis
Vilhena, Nuno
Sotelo, Guilherme
Jiang, Zhenan
Große, Veit
Bagni, Tommaso
Mauro, Diego
Senatore, Carmine
Mankevich, Alexey
Amelichev, Vadim
Samoilenkov, Sergey
Yoon, Tiem Leong
Wang, Yao
Camata, Renato P.
Chen, Cheng Chien
Madureira, Ana Maria
Abraham, Ajith
dc.subject.por.fl_str_mv applied superconductivity
artificial intelligence
big data
deep learning
machine learning
neural network
Ceramics and Composites
Condensed Matter Physics
Metals and Alloys
Electrical and Electronic Engineering
Materials Chemistry
topic applied superconductivity
artificial intelligence
big data
deep learning
machine learning
neural network
Ceramics and Composites
Condensed Matter Physics
Metals and Alloys
Electrical and Electronic Engineering
Materials Chemistry
description Funding Information: Financial support was provided by the Swiss National Science Foundation (Grant No. 200021_184940). Funding Information: Networking support provided by the European Cooperation in Science and Technology, COST Action CA19108 (Hi-SCALE) is acknowledged. Funding Information: A part of this work was supported by the Russian National Technology Initiative Foundation (Grant ID 0000000007418QR20002). Funding Information: The research was also supported by the European Synchrotron Radiation Facility (Grant No. MA-2767). Funding Information: This work was supported in part by the New Zealand Ministry of Business, Innovation and Employment (MBIE) by the Strategic Science Investment Fund ‘‘Advanced Energy Technology Platforms’’ under Contract RTVU2004. Funding Information: Y Wang acknowledges support from the National Science Foundation (NSF) Award DMR-2132338. R P Camata and C-C Chen are supported by the FTPP Program funded by NSF EPSCoR RII Track-1 Cooperative Agreement OIA-2148653. C-C Chen also acknowledges support from the NSF Award DMR-2142801. Publisher Copyright: © 2023 The Author(s). Published by IOP Publishing Ltd.
publishDate 2023
dc.date.none.fl_str_mv 2023-07-11T22:23:12Z
2023-04
2023-04-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/155114
url http://hdl.handle.net/10362/155114
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0953-2048
PURE: 65902268
https://doi.org/10.1088/1361-6668/acbb34
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 58
application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799138145271283712