Efficient recovery algorithm for discrete valued sparse signals using an ADMM approach

Detalhes bibliográficos
Autor(a) principal: Souto, N. M. B.
Data de Publicação: 2017
Outros Autores: Lopes, H. A.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10071/14512
Resumo: Motivated by applications in wireless communications, in this paper we propose a reconstruction algorithm for sparse signals whose values are taken from a discrete set, using a limited number of noisy observations. Unlike conventional compressed sensing algorithms, the proposed approach incorporates knowledge of the discrete valued nature of the signal in the detection process. This is accomplished through the alternating direction method of the multipliers which is applied as a heuristic to decompose the associated maximum likelihood detection problem in order to find candidate solutions with a low computational complexity order. Numerical results in different scenarios show that the proposed algorithm is capable of achieving very competitive recovery error rates when compared with other existing suboptimal approaches.
id RCAP_b0c92a8af729b30f63eaaeb192dddc60
oai_identifier_str oai:repositorio.iscte-iul.pt:10071/14512
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Efficient recovery algorithm for discrete valued sparse signals using an ADMM approachSparse signal recoveryDiscrete signal reconstructionCompressed sensingGeneralized spatial modulations (GSM)Large scale MIMO (LS-MIMO)Motivated by applications in wireless communications, in this paper we propose a reconstruction algorithm for sparse signals whose values are taken from a discrete set, using a limited number of noisy observations. Unlike conventional compressed sensing algorithms, the proposed approach incorporates knowledge of the discrete valued nature of the signal in the detection process. This is accomplished through the alternating direction method of the multipliers which is applied as a heuristic to decompose the associated maximum likelihood detection problem in order to find candidate solutions with a low computational complexity order. Numerical results in different scenarios show that the proposed algorithm is capable of achieving very competitive recovery error rates when compared with other existing suboptimal approaches.IEEE2017-10-17T16:34:40Z2017-01-01T00:00:00Z20172019-03-25T10:45:26Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10071/14512eng2169-353610.1109/ACCESS.2017.2754586Souto, N. M. B.Lopes, H. A.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-09T17:45:05Zoai:repositorio.iscte-iul.pt:10071/14512Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T22:21:28.044149Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Efficient recovery algorithm for discrete valued sparse signals using an ADMM approach
title Efficient recovery algorithm for discrete valued sparse signals using an ADMM approach
spellingShingle Efficient recovery algorithm for discrete valued sparse signals using an ADMM approach
Souto, N. M. B.
Sparse signal recovery
Discrete signal reconstruction
Compressed sensing
Generalized spatial modulations (GSM)
Large scale MIMO (LS-MIMO)
title_short Efficient recovery algorithm for discrete valued sparse signals using an ADMM approach
title_full Efficient recovery algorithm for discrete valued sparse signals using an ADMM approach
title_fullStr Efficient recovery algorithm for discrete valued sparse signals using an ADMM approach
title_full_unstemmed Efficient recovery algorithm for discrete valued sparse signals using an ADMM approach
title_sort Efficient recovery algorithm for discrete valued sparse signals using an ADMM approach
author Souto, N. M. B.
author_facet Souto, N. M. B.
Lopes, H. A.
author_role author
author2 Lopes, H. A.
author2_role author
dc.contributor.author.fl_str_mv Souto, N. M. B.
Lopes, H. A.
dc.subject.por.fl_str_mv Sparse signal recovery
Discrete signal reconstruction
Compressed sensing
Generalized spatial modulations (GSM)
Large scale MIMO (LS-MIMO)
topic Sparse signal recovery
Discrete signal reconstruction
Compressed sensing
Generalized spatial modulations (GSM)
Large scale MIMO (LS-MIMO)
description Motivated by applications in wireless communications, in this paper we propose a reconstruction algorithm for sparse signals whose values are taken from a discrete set, using a limited number of noisy observations. Unlike conventional compressed sensing algorithms, the proposed approach incorporates knowledge of the discrete valued nature of the signal in the detection process. This is accomplished through the alternating direction method of the multipliers which is applied as a heuristic to decompose the associated maximum likelihood detection problem in order to find candidate solutions with a low computational complexity order. Numerical results in different scenarios show that the proposed algorithm is capable of achieving very competitive recovery error rates when compared with other existing suboptimal approaches.
publishDate 2017
dc.date.none.fl_str_mv 2017-10-17T16:34:40Z
2017-01-01T00:00:00Z
2017
2019-03-25T10:45:26Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10071/14512
url http://hdl.handle.net/10071/14512
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 2169-3536
10.1109/ACCESS.2017.2754586
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv IEEE
publisher.none.fl_str_mv IEEE
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799134775616733184