Efficient recovery algorithm for discrete valued sparse signals using an ADMM approach
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10071/14512 |
Resumo: | Motivated by applications in wireless communications, in this paper we propose a reconstruction algorithm for sparse signals whose values are taken from a discrete set, using a limited number of noisy observations. Unlike conventional compressed sensing algorithms, the proposed approach incorporates knowledge of the discrete valued nature of the signal in the detection process. This is accomplished through the alternating direction method of the multipliers which is applied as a heuristic to decompose the associated maximum likelihood detection problem in order to find candidate solutions with a low computational complexity order. Numerical results in different scenarios show that the proposed algorithm is capable of achieving very competitive recovery error rates when compared with other existing suboptimal approaches. |
id |
RCAP_b0c92a8af729b30f63eaaeb192dddc60 |
---|---|
oai_identifier_str |
oai:repositorio.iscte-iul.pt:10071/14512 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Efficient recovery algorithm for discrete valued sparse signals using an ADMM approachSparse signal recoveryDiscrete signal reconstructionCompressed sensingGeneralized spatial modulations (GSM)Large scale MIMO (LS-MIMO)Motivated by applications in wireless communications, in this paper we propose a reconstruction algorithm for sparse signals whose values are taken from a discrete set, using a limited number of noisy observations. Unlike conventional compressed sensing algorithms, the proposed approach incorporates knowledge of the discrete valued nature of the signal in the detection process. This is accomplished through the alternating direction method of the multipliers which is applied as a heuristic to decompose the associated maximum likelihood detection problem in order to find candidate solutions with a low computational complexity order. Numerical results in different scenarios show that the proposed algorithm is capable of achieving very competitive recovery error rates when compared with other existing suboptimal approaches.IEEE2017-10-17T16:34:40Z2017-01-01T00:00:00Z20172019-03-25T10:45:26Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10071/14512eng2169-353610.1109/ACCESS.2017.2754586Souto, N. M. B.Lopes, H. A.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-09T17:45:05Zoai:repositorio.iscte-iul.pt:10071/14512Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T22:21:28.044149Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Efficient recovery algorithm for discrete valued sparse signals using an ADMM approach |
title |
Efficient recovery algorithm for discrete valued sparse signals using an ADMM approach |
spellingShingle |
Efficient recovery algorithm for discrete valued sparse signals using an ADMM approach Souto, N. M. B. Sparse signal recovery Discrete signal reconstruction Compressed sensing Generalized spatial modulations (GSM) Large scale MIMO (LS-MIMO) |
title_short |
Efficient recovery algorithm for discrete valued sparse signals using an ADMM approach |
title_full |
Efficient recovery algorithm for discrete valued sparse signals using an ADMM approach |
title_fullStr |
Efficient recovery algorithm for discrete valued sparse signals using an ADMM approach |
title_full_unstemmed |
Efficient recovery algorithm for discrete valued sparse signals using an ADMM approach |
title_sort |
Efficient recovery algorithm for discrete valued sparse signals using an ADMM approach |
author |
Souto, N. M. B. |
author_facet |
Souto, N. M. B. Lopes, H. A. |
author_role |
author |
author2 |
Lopes, H. A. |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Souto, N. M. B. Lopes, H. A. |
dc.subject.por.fl_str_mv |
Sparse signal recovery Discrete signal reconstruction Compressed sensing Generalized spatial modulations (GSM) Large scale MIMO (LS-MIMO) |
topic |
Sparse signal recovery Discrete signal reconstruction Compressed sensing Generalized spatial modulations (GSM) Large scale MIMO (LS-MIMO) |
description |
Motivated by applications in wireless communications, in this paper we propose a reconstruction algorithm for sparse signals whose values are taken from a discrete set, using a limited number of noisy observations. Unlike conventional compressed sensing algorithms, the proposed approach incorporates knowledge of the discrete valued nature of the signal in the detection process. This is accomplished through the alternating direction method of the multipliers which is applied as a heuristic to decompose the associated maximum likelihood detection problem in order to find candidate solutions with a low computational complexity order. Numerical results in different scenarios show that the proposed algorithm is capable of achieving very competitive recovery error rates when compared with other existing suboptimal approaches. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-10-17T16:34:40Z 2017-01-01T00:00:00Z 2017 2019-03-25T10:45:26Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10071/14512 |
url |
http://hdl.handle.net/10071/14512 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2169-3536 10.1109/ACCESS.2017.2754586 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
IEEE |
publisher.none.fl_str_mv |
IEEE |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799134775616733184 |