Jet energy measurement and its systematic uncertainty in proton–proton collisions at √s = 7 TeV with the ATLAS detector

Detalhes bibliográficos
Autor(a) principal: Santos, S. P. Amor dos
Data de Publicação: 2015
Outros Autores: Carvalho, J., Fiolhais, M. C. N., Oliveira, M., Galhardo, B., Veloso, F., Wolters, H., ATLAS Collaboration
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10316/109101
https://doi.org/10.1140/epjc/s10052-014-3190-y
Resumo: The jet energy scale (JES) and its systematic uncertainty are determined for jetsmeasured with theATLAS detector using proton–proton collision data with a centre-ofmass energy of √ s = 7 TeV corresponding to an integrated luminosity of 4.7 fb−1. Jets are reconstructed from energy deposits forming topological clusters of calorimeter cells using the anti-kt algorithmwith distance parameters R = 0.4 or R = 0.6, and are calibrated using MC simulations. A residual JES correction is applied to account for differences between data and MC simulations. This correction and its systematic uncertainty are estimated using a combination of in situ techniques exploiting the transverse momentum balance between a jet and a reference object such as a photon or a Z boson, for 20 ≤ pjet T < 1000 GeV and pseudorapidities |η| < 4.5. The effect of multiple proton–proton interactions is corrected for, and an uncertainty is evaluated using in situ techniques. The smallest JES uncertainty of less than 1 % is found in the central calorimeter region (|η| < 1.2) for jets with 55 ≤ pjet T < 500 GeV. For central jets at lower pT, the uncertainty is about 3 %. A consistent JES estimate is found usingmeasurements of the calorimeter response of single hadrons in proton–proton collisions and test-beam data, which also provide the estimate for pjet T > 1 TeV. The calibration of forward jets is derived from dijet pT balance measurements. The resulting uncertainty reaches its largest value of 6 % for low-pT jets at |η| = 4.5. Additional JES uncertainties due to specific event topologies, such as close-by jets or selections of event samples with an enhanced content of jets originating from light quarks or gluons, are also discussed. The magnitude of these uncertainties depends on the event sample used in a given physics analysis, but typically amounts to 0.5–3 %.
id RCAP_b103709b1d1bcd857b4ef040c6dab404
oai_identifier_str oai:estudogeral.uc.pt:10316/109101
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Jet energy measurement and its systematic uncertainty in proton–proton collisions at √s = 7 TeV with the ATLAS detectorThe jet energy scale (JES) and its systematic uncertainty are determined for jetsmeasured with theATLAS detector using proton–proton collision data with a centre-ofmass energy of √ s = 7 TeV corresponding to an integrated luminosity of 4.7 fb−1. Jets are reconstructed from energy deposits forming topological clusters of calorimeter cells using the anti-kt algorithmwith distance parameters R = 0.4 or R = 0.6, and are calibrated using MC simulations. A residual JES correction is applied to account for differences between data and MC simulations. This correction and its systematic uncertainty are estimated using a combination of in situ techniques exploiting the transverse momentum balance between a jet and a reference object such as a photon or a Z boson, for 20 ≤ pjet T < 1000 GeV and pseudorapidities |η| < 4.5. The effect of multiple proton–proton interactions is corrected for, and an uncertainty is evaluated using in situ techniques. The smallest JES uncertainty of less than 1 % is found in the central calorimeter region (|η| < 1.2) for jets with 55 ≤ pjet T < 500 GeV. For central jets at lower pT, the uncertainty is about 3 %. A consistent JES estimate is found usingmeasurements of the calorimeter response of single hadrons in proton–proton collisions and test-beam data, which also provide the estimate for pjet T > 1 TeV. The calibration of forward jets is derived from dijet pT balance measurements. The resulting uncertainty reaches its largest value of 6 % for low-pT jets at |η| = 4.5. Additional JES uncertainties due to specific event topologies, such as close-by jets or selections of event samples with an enhanced content of jets originating from light quarks or gluons, are also discussed. The magnitude of these uncertainties depends on the event sample used in a given physics analysis, but typically amounts to 0.5–3 %.We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS,MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; EPLANET, ERC and NSRF, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT and NSRF, Greece; ISF, MINERVA, GIF, ICORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; BRF and RCN, Norway; MNiSW and NCN, Poland; GRICES and FCT, Portugal; MNE/IFA, Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC andWallenberg Foundation, Sweden; SER, SNSFand Cantons of Bern andGeneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular fromCERNand theATLASTier- 1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.Springer Nature2015info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10316/109101http://hdl.handle.net/10316/109101https://doi.org/10.1140/epjc/s10052-014-3190-yengSantos, S. P. Amor dosCarvalho, J.Fiolhais, M. C. N.Oliveira, M.Galhardo, B.Veloso, F.Wolters, H.ATLAS Collaborationinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-09-27T11:26:44Zoai:estudogeral.uc.pt:10316/109101Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T21:25:18.620669Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Jet energy measurement and its systematic uncertainty in proton–proton collisions at √s = 7 TeV with the ATLAS detector
title Jet energy measurement and its systematic uncertainty in proton–proton collisions at √s = 7 TeV with the ATLAS detector
spellingShingle Jet energy measurement and its systematic uncertainty in proton–proton collisions at √s = 7 TeV with the ATLAS detector
Santos, S. P. Amor dos
title_short Jet energy measurement and its systematic uncertainty in proton–proton collisions at √s = 7 TeV with the ATLAS detector
title_full Jet energy measurement and its systematic uncertainty in proton–proton collisions at √s = 7 TeV with the ATLAS detector
title_fullStr Jet energy measurement and its systematic uncertainty in proton–proton collisions at √s = 7 TeV with the ATLAS detector
title_full_unstemmed Jet energy measurement and its systematic uncertainty in proton–proton collisions at √s = 7 TeV with the ATLAS detector
title_sort Jet energy measurement and its systematic uncertainty in proton–proton collisions at √s = 7 TeV with the ATLAS detector
author Santos, S. P. Amor dos
author_facet Santos, S. P. Amor dos
Carvalho, J.
Fiolhais, M. C. N.
Oliveira, M.
Galhardo, B.
Veloso, F.
Wolters, H.
ATLAS Collaboration
author_role author
author2 Carvalho, J.
Fiolhais, M. C. N.
Oliveira, M.
Galhardo, B.
Veloso, F.
Wolters, H.
ATLAS Collaboration
author2_role author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv Santos, S. P. Amor dos
Carvalho, J.
Fiolhais, M. C. N.
Oliveira, M.
Galhardo, B.
Veloso, F.
Wolters, H.
ATLAS Collaboration
description The jet energy scale (JES) and its systematic uncertainty are determined for jetsmeasured with theATLAS detector using proton–proton collision data with a centre-ofmass energy of √ s = 7 TeV corresponding to an integrated luminosity of 4.7 fb−1. Jets are reconstructed from energy deposits forming topological clusters of calorimeter cells using the anti-kt algorithmwith distance parameters R = 0.4 or R = 0.6, and are calibrated using MC simulations. A residual JES correction is applied to account for differences between data and MC simulations. This correction and its systematic uncertainty are estimated using a combination of in situ techniques exploiting the transverse momentum balance between a jet and a reference object such as a photon or a Z boson, for 20 ≤ pjet T < 1000 GeV and pseudorapidities |η| < 4.5. The effect of multiple proton–proton interactions is corrected for, and an uncertainty is evaluated using in situ techniques. The smallest JES uncertainty of less than 1 % is found in the central calorimeter region (|η| < 1.2) for jets with 55 ≤ pjet T < 500 GeV. For central jets at lower pT, the uncertainty is about 3 %. A consistent JES estimate is found usingmeasurements of the calorimeter response of single hadrons in proton–proton collisions and test-beam data, which also provide the estimate for pjet T > 1 TeV. The calibration of forward jets is derived from dijet pT balance measurements. The resulting uncertainty reaches its largest value of 6 % for low-pT jets at |η| = 4.5. Additional JES uncertainties due to specific event topologies, such as close-by jets or selections of event samples with an enhanced content of jets originating from light quarks or gluons, are also discussed. The magnitude of these uncertainties depends on the event sample used in a given physics analysis, but typically amounts to 0.5–3 %.
publishDate 2015
dc.date.none.fl_str_mv 2015
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10316/109101
http://hdl.handle.net/10316/109101
https://doi.org/10.1140/epjc/s10052-014-3190-y
url http://hdl.handle.net/10316/109101
https://doi.org/10.1140/epjc/s10052-014-3190-y
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Springer Nature
publisher.none.fl_str_mv Springer Nature
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799134135802920960