Optimization of a fuzzy logic controller for MR dampers using an adaptive neuro-fuzzy procedure
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10198/15381 |
Resumo: | Intelligent and adaptive control systems are naturally suitable to deal with dynamic uncertain systems with non-smooth nonlinearities; they constitute an important advantage over conventional control approaches. This control technology can be used to design powerful and robust controllers for complex vibration engineering problems such as vibration control of civil structures. Fuzzy logic based controllers are simple and robust systems that are rapidly becoming a viable alternative for classical controllers. Furthermore, new control devices such as magnetorheological (MR) dampers have been widely studied for structural control applications. In this paper, we design a semi-active fuzzy controller for MR dampers using an adaptive neuro-fuzzy inference system (ANFIS). The objective is to verify the effectiveness of a neuro-fuzzy controller in reducing the response of a building structure equipped with a MR damper operating in passive and semi-active control modes. The uncontrolled and controlled responses are compared to assess the performance of the fuzzy logic based controller. |
id |
RCAP_b105ba43b155c8c19779985284c30a12 |
---|---|
oai_identifier_str |
oai:bibliotecadigital.ipb.pt:10198/15381 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Optimization of a fuzzy logic controller for MR dampers using an adaptive neuro-fuzzy procedureANFISFuzzy logic controlMR damperStructural controlIntelligent and adaptive control systems are naturally suitable to deal with dynamic uncertain systems with non-smooth nonlinearities; they constitute an important advantage over conventional control approaches. This control technology can be used to design powerful and robust controllers for complex vibration engineering problems such as vibration control of civil structures. Fuzzy logic based controllers are simple and robust systems that are rapidly becoming a viable alternative for classical controllers. Furthermore, new control devices such as magnetorheological (MR) dampers have been widely studied for structural control applications. In this paper, we design a semi-active fuzzy controller for MR dampers using an adaptive neuro-fuzzy inference system (ANFIS). The objective is to verify the effectiveness of a neuro-fuzzy controller in reducing the response of a building structure equipped with a MR damper operating in passive and semi-active control modes. The uncontrolled and controlled responses are compared to assess the performance of the fuzzy logic based controller.Biblioteca Digital do IPBBraz-César, ManuelBarros, Rui2018-01-31T10:00:00Z20172017-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10198/15381engBraz-César, Manuel; Barros, Rui (2017). Optimization of a fuzzy logic controller for MR dampers using an adaptive neuro-fuzzy procedure. International Journal of Structural Stability and Dynamics. ISSN 0219-4554. 17, p. 1-180219-455410.1142/S0219455417400077info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-21T10:35:57Zoai:bibliotecadigital.ipb.pt:10198/15381Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T23:04:59.203860Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Optimization of a fuzzy logic controller for MR dampers using an adaptive neuro-fuzzy procedure |
title |
Optimization of a fuzzy logic controller for MR dampers using an adaptive neuro-fuzzy procedure |
spellingShingle |
Optimization of a fuzzy logic controller for MR dampers using an adaptive neuro-fuzzy procedure Braz-César, Manuel ANFIS Fuzzy logic control MR damper Structural control |
title_short |
Optimization of a fuzzy logic controller for MR dampers using an adaptive neuro-fuzzy procedure |
title_full |
Optimization of a fuzzy logic controller for MR dampers using an adaptive neuro-fuzzy procedure |
title_fullStr |
Optimization of a fuzzy logic controller for MR dampers using an adaptive neuro-fuzzy procedure |
title_full_unstemmed |
Optimization of a fuzzy logic controller for MR dampers using an adaptive neuro-fuzzy procedure |
title_sort |
Optimization of a fuzzy logic controller for MR dampers using an adaptive neuro-fuzzy procedure |
author |
Braz-César, Manuel |
author_facet |
Braz-César, Manuel Barros, Rui |
author_role |
author |
author2 |
Barros, Rui |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Biblioteca Digital do IPB |
dc.contributor.author.fl_str_mv |
Braz-César, Manuel Barros, Rui |
dc.subject.por.fl_str_mv |
ANFIS Fuzzy logic control MR damper Structural control |
topic |
ANFIS Fuzzy logic control MR damper Structural control |
description |
Intelligent and adaptive control systems are naturally suitable to deal with dynamic uncertain systems with non-smooth nonlinearities; they constitute an important advantage over conventional control approaches. This control technology can be used to design powerful and robust controllers for complex vibration engineering problems such as vibration control of civil structures. Fuzzy logic based controllers are simple and robust systems that are rapidly becoming a viable alternative for classical controllers. Furthermore, new control devices such as magnetorheological (MR) dampers have been widely studied for structural control applications. In this paper, we design a semi-active fuzzy controller for MR dampers using an adaptive neuro-fuzzy inference system (ANFIS). The objective is to verify the effectiveness of a neuro-fuzzy controller in reducing the response of a building structure equipped with a MR damper operating in passive and semi-active control modes. The uncontrolled and controlled responses are compared to assess the performance of the fuzzy logic based controller. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017 2017-01-01T00:00:00Z 2018-01-31T10:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10198/15381 |
url |
http://hdl.handle.net/10198/15381 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Braz-César, Manuel; Barros, Rui (2017). Optimization of a fuzzy logic controller for MR dampers using an adaptive neuro-fuzzy procedure. International Journal of Structural Stability and Dynamics. ISSN 0219-4554. 17, p. 1-18 0219-4554 10.1142/S0219455417400077 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799135298326626304 |