On the predictability of postoperative complications for cancer patients
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/128322 |
Resumo: | DSAIPA/DS/0044/2018 |
id |
RCAP_b1618ed4b120617f4f81bf2630e9fa62 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/128322 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
On the predictability of postoperative complications for cancer patientsa Portuguese cohort studyCancerClinical decision support systemData modelingMachine learningPostoperative complicationsRisk predictionHealth PolicyHealth InformaticsSDG 3 - Good Health and Well-beingDSAIPA/DS/0044/2018Postoperative complications are still hard to predict despite the efforts towards the creation of clinical risk scores. The published scores contribute for the creation of specialized tools, but with limited predictive performance and reusability for implementation in the oncological context. This work aims to predict postoperative complications risk for cancer patients, offering two major contributions. First, to develop and evaluate a machine learning-based risk score, specific for the Portuguese population using a retrospective cohort of 847 cancer patients undergoing surgery between 2016 and 2018, for 4 outcomes of interest: (1) existence of postoperative complications, (2) severity level of complications, (3) number of days in the Intermediate Care Unit (ICU), and (4) postoperative mortality within 1 year. An additional cohort of 137 cancer patients from the same center was used for validation. Second, to improve the interpretability of the predictive models. In order to achieve these objectives, we propose an approach for the learning of risk predictors, offering new perspectives and insights into the clinical decision process. For postoperative complications the Receiver Operating Characteristic Curve (AUC) was 0.69, for complications’ severity AUC was 0.65, for the days in the ICU the mean absolute error was 1.07 days, and for 1-year postoperative mortality the AUC was 0.74, calculated on the development cohort. In this study, predictive models which could help to guide physicians at organizational and clinical decision making were developed. Additionally, a web-based decision support tool is further provided to this end.LAQV@REQUIMTERUNGonçalves, DanielHenriques, RuiSantos, Lúcio LaraCosta, Rafael S.2021-11-26T23:44:49Z2021-122021-12-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10362/128322eng1472-6947PURE: 34773425https://doi.org/10.1186/s12911-021-01562-2info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:07:58Zoai:run.unl.pt:10362/128322Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:46:17.430405Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
On the predictability of postoperative complications for cancer patients a Portuguese cohort study |
title |
On the predictability of postoperative complications for cancer patients |
spellingShingle |
On the predictability of postoperative complications for cancer patients Gonçalves, Daniel Cancer Clinical decision support system Data modeling Machine learning Postoperative complications Risk prediction Health Policy Health Informatics SDG 3 - Good Health and Well-being |
title_short |
On the predictability of postoperative complications for cancer patients |
title_full |
On the predictability of postoperative complications for cancer patients |
title_fullStr |
On the predictability of postoperative complications for cancer patients |
title_full_unstemmed |
On the predictability of postoperative complications for cancer patients |
title_sort |
On the predictability of postoperative complications for cancer patients |
author |
Gonçalves, Daniel |
author_facet |
Gonçalves, Daniel Henriques, Rui Santos, Lúcio Lara Costa, Rafael S. |
author_role |
author |
author2 |
Henriques, Rui Santos, Lúcio Lara Costa, Rafael S. |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
LAQV@REQUIMTE RUN |
dc.contributor.author.fl_str_mv |
Gonçalves, Daniel Henriques, Rui Santos, Lúcio Lara Costa, Rafael S. |
dc.subject.por.fl_str_mv |
Cancer Clinical decision support system Data modeling Machine learning Postoperative complications Risk prediction Health Policy Health Informatics SDG 3 - Good Health and Well-being |
topic |
Cancer Clinical decision support system Data modeling Machine learning Postoperative complications Risk prediction Health Policy Health Informatics SDG 3 - Good Health and Well-being |
description |
DSAIPA/DS/0044/2018 |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-11-26T23:44:49Z 2021-12 2021-12-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/128322 |
url |
http://hdl.handle.net/10362/128322 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1472-6947 PURE: 34773425 https://doi.org/10.1186/s12911-021-01562-2 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138066965725184 |