Using machine learning on V2X communications data for VRU collision prediction
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | https://hdl.handle.net/1822/85377 |
Resumo: | The datasets presented in this study are available in Zenodo at https://doi.org/10.5281/zenodo.7376770 (accessed on 16 December 2022), reference number [23]. These datasets are the raw data used for the testing and training of the ML algorithms in this work. |
id |
RCAP_b16d00b8134e7f25f31e2cad61fe1b84 |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/85377 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Using machine learning on V2X communications data for VRU collision predictionVehicular communicationsVulnerable road usersCollision predictionMachine learningEngenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e InformáticaScience & TechnologyThe datasets presented in this study are available in Zenodo at https://doi.org/10.5281/zenodo.7376770 (accessed on 16 December 2022), reference number [23]. These datasets are the raw data used for the testing and training of the ML algorithms in this work.Intelligent Transportation Systems (ITSs) are systems that aim to provide innovative services for road users in order to improve traffic efficiency, mobility and safety. This aspect of safety is of utmost importance for Vulnerable Road Users (VRUs), as these users are typically more exposed to dangerous situations, and their vehicles also possess poorer safety mechanisms when in comparison to regular vehicles on the road. Implementing automatic safety solutions for VRU vehicles is challenging since they have high agility and it can be difficult to anticipate their behavior. However, if equipped with communication capabilities, the generated Vehicle-to-Anything (V2X) data can be leveraged by Machine Learning (ML) mechanisms in order to implement such automatic systems. This work proposes a VRU (motorcyclist) collision prediction system, utilizing stacked unidirectional Long Short-Term Memorys (LSTMs) on top of communication data that is generated using the VEINS simulation framework (coupling the Simulation of Urban MObility (SUMO) and Network Simulator 3 (ns-3) tools). The proposed system performed well in two different scenarios: in Scenario A, it predicted 96% of the collisions, averaging 4.53 s for Average Prediction Time (s) (APT) and with a Correct Decision Percentage (CDP) of 41% and 78 False Positives (FPs); in Scenario B, it predicted 95% of the collisions, with a 4.44 s APT, while the CDP was 43% with 68 FPs. The results show the effectiveness of the approach: using ML methods on V2X data allowed the prediction of most of the simulated accidents. Nonetheless, the presence of a relatively high number of FPs does not allow for the usage of <i>automatic</i> safety features (e.g., emergency breaking in the passenger vehicles); thus, collision avoidance must be achieved <i>manually</i> by the drivers.This work has been supported by national funds through FCT—Fundação para a Ciência e Tecnologia within the Project Scope: UIDB/00319/2020.Multidisciplinary Digital Publishing InstituteUniversidade do MinhoRibeiro, BrunoNicolau, Maria JoãoSantos, Alexandre2023-01-222023-01-22T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/1822/85377engRibeiro, B.; Nicolau, M.J.; Santos, A. Using Machine Learning on V2X Communications Data for VRU Collision Prediction. Sensors 2023, 23, 1260. https://doi.org/ 10.3390/s230312601424-82201424-822010.3390/s2303126036772299https://www.mdpi.com/1424-8220/23/3/1260info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T11:58:24Zoai:repositorium.sdum.uminho.pt:1822/85377Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T18:48:07.162031Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Using machine learning on V2X communications data for VRU collision prediction |
title |
Using machine learning on V2X communications data for VRU collision prediction |
spellingShingle |
Using machine learning on V2X communications data for VRU collision prediction Ribeiro, Bruno Vehicular communications Vulnerable road users Collision prediction Machine learning Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática Science & Technology |
title_short |
Using machine learning on V2X communications data for VRU collision prediction |
title_full |
Using machine learning on V2X communications data for VRU collision prediction |
title_fullStr |
Using machine learning on V2X communications data for VRU collision prediction |
title_full_unstemmed |
Using machine learning on V2X communications data for VRU collision prediction |
title_sort |
Using machine learning on V2X communications data for VRU collision prediction |
author |
Ribeiro, Bruno |
author_facet |
Ribeiro, Bruno Nicolau, Maria João Santos, Alexandre |
author_role |
author |
author2 |
Nicolau, Maria João Santos, Alexandre |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Ribeiro, Bruno Nicolau, Maria João Santos, Alexandre |
dc.subject.por.fl_str_mv |
Vehicular communications Vulnerable road users Collision prediction Machine learning Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática Science & Technology |
topic |
Vehicular communications Vulnerable road users Collision prediction Machine learning Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática Science & Technology |
description |
The datasets presented in this study are available in Zenodo at https://doi.org/10.5281/zenodo.7376770 (accessed on 16 December 2022), reference number [23]. These datasets are the raw data used for the testing and training of the ML algorithms in this work. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-01-22 2023-01-22T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/1822/85377 |
url |
https://hdl.handle.net/1822/85377 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Ribeiro, B.; Nicolau, M.J.; Santos, A. Using Machine Learning on V2X Communications Data for VRU Collision Prediction. Sensors 2023, 23, 1260. https://doi.org/ 10.3390/s23031260 1424-8220 1424-8220 10.3390/s23031260 36772299 https://www.mdpi.com/1424-8220/23/3/1260 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Multidisciplinary Digital Publishing Institute |
publisher.none.fl_str_mv |
Multidisciplinary Digital Publishing Institute |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799132241912135680 |