An infrastructure-free magnetic-based indoor positioning system with deep learning
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/108222 |
Resumo: | POCI-01-0247-FEDER-033479 |
id |
RCAP_b1a4f9e8d2cce813048be57773682728 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/108222 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
An infrastructure-free magnetic-based indoor positioning system with deep learningDeep neural networksFingerprintingIndoor positioning systemsInfrastructure-freeMagnetic fieldSmartphonesAnalytical ChemistryBiochemistryAtomic and Molecular Physics, and OpticsInstrumentationElectrical and Electronic EngineeringPOCI-01-0247-FEDER-033479Infrastructure-free Indoor Positioning Systems (IPS) are becoming popular due to their scalability and a wide range of applications. Such systems often rely on deployed Wi-Fi networks. However, their usability may be compromised, either due to scanning restrictions from recent Android versions or the proliferation of 5G technology. This raises the need for new infrastructure-free IPS independent of Wi-Fi networks. In this paper, we propose the use of magnetic field data for IPS, through Deep Neural Networks (DNN). Firstly, a dataset of human indoor trajectories was collected with different smartphones. Afterwards, a magnetic fingerprint was constructed and relevant features were extracted to train a DNN that returns a probability map of a user’s location. Finally, two postprocessing methods were applied to obtain the most probable location regions. We asserted the performance of our solution against a test dataset, which produced a Success Rate of around 80%. We believe that these results are competitive for an IPS based on a single sensing source. Moreover, the magnetic field can be used as an additional information layer to increase the robustness and redundancy of current multi-source IPS.DF – Departamento de FísicaLIBPhys-UNLRUNFernandes, LetíciaBarandas, MaríliaFolgado, DuarteLeonardo, RicardoSantos, RicardoCarreiro, AndréGamboa, Hugo2020-12-05T00:28:51Z2020-11-022020-11-02T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article19application/pdfhttp://hdl.handle.net/10362/108222eng1424-8220PURE: 26661418https://doi.org/10.3390/s20226664info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T04:52:51Zoai:run.unl.pt:10362/108222Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:41:09.002535Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
An infrastructure-free magnetic-based indoor positioning system with deep learning |
title |
An infrastructure-free magnetic-based indoor positioning system with deep learning |
spellingShingle |
An infrastructure-free magnetic-based indoor positioning system with deep learning Fernandes, Letícia Deep neural networks Fingerprinting Indoor positioning systems Infrastructure-free Magnetic field Smartphones Analytical Chemistry Biochemistry Atomic and Molecular Physics, and Optics Instrumentation Electrical and Electronic Engineering |
title_short |
An infrastructure-free magnetic-based indoor positioning system with deep learning |
title_full |
An infrastructure-free magnetic-based indoor positioning system with deep learning |
title_fullStr |
An infrastructure-free magnetic-based indoor positioning system with deep learning |
title_full_unstemmed |
An infrastructure-free magnetic-based indoor positioning system with deep learning |
title_sort |
An infrastructure-free magnetic-based indoor positioning system with deep learning |
author |
Fernandes, Letícia |
author_facet |
Fernandes, Letícia Barandas, Marília Folgado, Duarte Leonardo, Ricardo Santos, Ricardo Carreiro, André Gamboa, Hugo |
author_role |
author |
author2 |
Barandas, Marília Folgado, Duarte Leonardo, Ricardo Santos, Ricardo Carreiro, André Gamboa, Hugo |
author2_role |
author author author author author author |
dc.contributor.none.fl_str_mv |
DF – Departamento de Física LIBPhys-UNL RUN |
dc.contributor.author.fl_str_mv |
Fernandes, Letícia Barandas, Marília Folgado, Duarte Leonardo, Ricardo Santos, Ricardo Carreiro, André Gamboa, Hugo |
dc.subject.por.fl_str_mv |
Deep neural networks Fingerprinting Indoor positioning systems Infrastructure-free Magnetic field Smartphones Analytical Chemistry Biochemistry Atomic and Molecular Physics, and Optics Instrumentation Electrical and Electronic Engineering |
topic |
Deep neural networks Fingerprinting Indoor positioning systems Infrastructure-free Magnetic field Smartphones Analytical Chemistry Biochemistry Atomic and Molecular Physics, and Optics Instrumentation Electrical and Electronic Engineering |
description |
POCI-01-0247-FEDER-033479 |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-12-05T00:28:51Z 2020-11-02 2020-11-02T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/108222 |
url |
http://hdl.handle.net/10362/108222 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1424-8220 PURE: 26661418 https://doi.org/10.3390/s20226664 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
19 application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138024772075520 |