Computational Intelligence for Life Sciences
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , , , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/95133 |
Resumo: | Besozzi, D., Manzoni, L., Nobile, M. S., Spolaor, S., Castelli, M., Vanneschi, L., ... Tangherloni, A. (2020). Computational Intelligence for Life Sciences. Fundamenta Informaticae, 171(1-4), 57-80. https://doi.org/10.3233/FI-2020-1872 |
id |
RCAP_b1ac6f3eb9ae99111def843a4d5b398b |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/95133 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Computational Intelligence for Life SciencesComputational IntelligenceEvolutionary ComputationGenetic AlgorithmGenetic ProgrammingHaplotype AssemblyParameter EstimationParticle Swarm OptimizationProtein FoldingSwarm IntelligenceTheoretical Computer ScienceAlgebra and Number TheoryInformation SystemsComputational Theory and MathematicsSDG 3 - Good Health and Well-beingBesozzi, D., Manzoni, L., Nobile, M. S., Spolaor, S., Castelli, M., Vanneschi, L., ... Tangherloni, A. (2020). Computational Intelligence for Life Sciences. Fundamenta Informaticae, 171(1-4), 57-80. https://doi.org/10.3233/FI-2020-1872Computational Intelligence (CI) is a computer science discipline encompassing the theory, design, development and application of biologically and linguistically derived computational paradigms. Traditionally, the main elements of CI are Evolutionary Computation, Swarm Intelligence, Fuzzy Logic, and Neural Networks. CI aims at proposing new algorithms able to solve complex computational problems by taking inspiration from natural phenomena. In an intriguing turn of events, these nature-inspired methods have been widely adopted to investigate a plethora of problems related to nature itself. In this paper we present a variety of CI methods applied to three problems in life sciences, highlighting their effectiveness: we describe how protein folding can be faced by exploiting Genetic Programming, the inference of haplotypes can be tackled using Genetic Algorithms, and the estimation of biochemical kinetic parameters can be performed by means of Swarm Intelligence. We show that CI methods can generate very high quality solutions, providing a sound methodology to solve complex optimization problems in life sciences.NOVA Information Management School (NOVA IMS)Information Management Research Center (MagIC) - NOVA Information Management SchoolRUNBesozzi, DanielaManzoni, LucaNobile, Marco S.Spolaor, SimoneCastelli, MauroVanneschi, LeonardoCazzaniga, PaoloRuberto, StefanoRundo, LeonardoTangherloni, Andrea2020-03-26T23:35:07Z2020-01-012020-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article24application/pdfhttp://hdl.handle.net/10362/95133eng0169-2968PURE: 15891263https://doi.org/10.3233/FI-2020-1872info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T04:43:09Zoai:run.unl.pt:10362/95133Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:38:14.017978Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Computational Intelligence for Life Sciences |
title |
Computational Intelligence for Life Sciences |
spellingShingle |
Computational Intelligence for Life Sciences Besozzi, Daniela Computational Intelligence Evolutionary Computation Genetic Algorithm Genetic Programming Haplotype Assembly Parameter Estimation Particle Swarm Optimization Protein Folding Swarm Intelligence Theoretical Computer Science Algebra and Number Theory Information Systems Computational Theory and Mathematics SDG 3 - Good Health and Well-being |
title_short |
Computational Intelligence for Life Sciences |
title_full |
Computational Intelligence for Life Sciences |
title_fullStr |
Computational Intelligence for Life Sciences |
title_full_unstemmed |
Computational Intelligence for Life Sciences |
title_sort |
Computational Intelligence for Life Sciences |
author |
Besozzi, Daniela |
author_facet |
Besozzi, Daniela Manzoni, Luca Nobile, Marco S. Spolaor, Simone Castelli, Mauro Vanneschi, Leonardo Cazzaniga, Paolo Ruberto, Stefano Rundo, Leonardo Tangherloni, Andrea |
author_role |
author |
author2 |
Manzoni, Luca Nobile, Marco S. Spolaor, Simone Castelli, Mauro Vanneschi, Leonardo Cazzaniga, Paolo Ruberto, Stefano Rundo, Leonardo Tangherloni, Andrea |
author2_role |
author author author author author author author author author |
dc.contributor.none.fl_str_mv |
NOVA Information Management School (NOVA IMS) Information Management Research Center (MagIC) - NOVA Information Management School RUN |
dc.contributor.author.fl_str_mv |
Besozzi, Daniela Manzoni, Luca Nobile, Marco S. Spolaor, Simone Castelli, Mauro Vanneschi, Leonardo Cazzaniga, Paolo Ruberto, Stefano Rundo, Leonardo Tangherloni, Andrea |
dc.subject.por.fl_str_mv |
Computational Intelligence Evolutionary Computation Genetic Algorithm Genetic Programming Haplotype Assembly Parameter Estimation Particle Swarm Optimization Protein Folding Swarm Intelligence Theoretical Computer Science Algebra and Number Theory Information Systems Computational Theory and Mathematics SDG 3 - Good Health and Well-being |
topic |
Computational Intelligence Evolutionary Computation Genetic Algorithm Genetic Programming Haplotype Assembly Parameter Estimation Particle Swarm Optimization Protein Folding Swarm Intelligence Theoretical Computer Science Algebra and Number Theory Information Systems Computational Theory and Mathematics SDG 3 - Good Health and Well-being |
description |
Besozzi, D., Manzoni, L., Nobile, M. S., Spolaor, S., Castelli, M., Vanneschi, L., ... Tangherloni, A. (2020). Computational Intelligence for Life Sciences. Fundamenta Informaticae, 171(1-4), 57-80. https://doi.org/10.3233/FI-2020-1872 |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-03-26T23:35:07Z 2020-01-01 2020-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/95133 |
url |
http://hdl.handle.net/10362/95133 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0169-2968 PURE: 15891263 https://doi.org/10.3233/FI-2020-1872 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
24 application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137998846033920 |