A well conditioned method of fundamental solutions for laplace equation
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.2/11856 |
Resumo: | The method of fundamental solutions (MFS) is a numerical method for solving boundary value problems involving linear partial differential equations. It is well known that it can be very effective assuming regularity of the domain and boundary conditions. The main drawback of the MFS is that the matrices involved typically are ill-conditioned and this may prevent to achieve high accuracy. In this work, we propose a new algorithm to remove the ill conditioning of the classical MFS in the context of Laplace equation defined in planar domains. The main idea is to expand the MFS basis functions in terms of harmonic polynomials. Then, using the singular value decomposition and Arnoldi orthogonalization we define well conditioned basis functions spanning the same functional space as the MFS's. Several numerical examples show that this approach is much superior to previous approaches, such as the classical MFS or the MFS-QR. |
id |
RCAP_b26fbb50aede3070ed520d163cb6a210 |
---|---|
oai_identifier_str |
oai:repositorioaberto.uab.pt:10400.2/11856 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
A well conditioned method of fundamental solutions for laplace equationThe method of fundamental solutions (MFS) is a numerical method for solving boundary value problems involving linear partial differential equations. It is well known that it can be very effective assuming regularity of the domain and boundary conditions. The main drawback of the MFS is that the matrices involved typically are ill-conditioned and this may prevent to achieve high accuracy. In this work, we propose a new algorithm to remove the ill conditioning of the classical MFS in the context of Laplace equation defined in planar domains. The main idea is to expand the MFS basis functions in terms of harmonic polynomials. Then, using the singular value decomposition and Arnoldi orthogonalization we define well conditioned basis functions spanning the same functional space as the MFS's. Several numerical examples show that this approach is much superior to previous approaches, such as the classical MFS or the MFS-QR.The research was partially supported by FCT, Portugal, through the scientific project UIDB/00208/2020.SpringerRepositório AbertoAntunes, Pedro R. S.2023-03-23T01:30:22Z20222022-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.2/11856eng1017-1398info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-16T15:40:37Zoai:repositorioaberto.uab.pt:10400.2/11856Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T22:51:11.365999Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
A well conditioned method of fundamental solutions for laplace equation |
title |
A well conditioned method of fundamental solutions for laplace equation |
spellingShingle |
A well conditioned method of fundamental solutions for laplace equation Antunes, Pedro R. S. |
title_short |
A well conditioned method of fundamental solutions for laplace equation |
title_full |
A well conditioned method of fundamental solutions for laplace equation |
title_fullStr |
A well conditioned method of fundamental solutions for laplace equation |
title_full_unstemmed |
A well conditioned method of fundamental solutions for laplace equation |
title_sort |
A well conditioned method of fundamental solutions for laplace equation |
author |
Antunes, Pedro R. S. |
author_facet |
Antunes, Pedro R. S. |
author_role |
author |
dc.contributor.none.fl_str_mv |
Repositório Aberto |
dc.contributor.author.fl_str_mv |
Antunes, Pedro R. S. |
description |
The method of fundamental solutions (MFS) is a numerical method for solving boundary value problems involving linear partial differential equations. It is well known that it can be very effective assuming regularity of the domain and boundary conditions. The main drawback of the MFS is that the matrices involved typically are ill-conditioned and this may prevent to achieve high accuracy. In this work, we propose a new algorithm to remove the ill conditioning of the classical MFS in the context of Laplace equation defined in planar domains. The main idea is to expand the MFS basis functions in terms of harmonic polynomials. Then, using the singular value decomposition and Arnoldi orthogonalization we define well conditioned basis functions spanning the same functional space as the MFS's. Several numerical examples show that this approach is much superior to previous approaches, such as the classical MFS or the MFS-QR. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022 2022-01-01T00:00:00Z 2023-03-23T01:30:22Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.2/11856 |
url |
http://hdl.handle.net/10400.2/11856 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1017-1398 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799135102040539136 |