Metabolic Footprint, towards Understanding Type 2 Diabetes beyond Glycemia
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , , , , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/105040 |
Resumo: | Type 2 diabetes (T2D) heterogeneity is a major determinant of complications risk and treatment response. Using cluster analysis, we aimed to stratify glycemia within metabolic multidimensionality and extract pathophysiological insights out of metabolic profiling. We performed a cluster analysis to stratify 974 subjects (PREVADIAB2 cohort) with normoglycemia, prediabetes, or non-treated diabetes. The algorithm was informed by age, anthropometry, and metabolic milieu (glucose, insulin, C-peptide, and free fatty acid (FFA) levels during the oral glucose tolerance test OGTT). For cluster profiling, we additionally used indexes of metabolism mechanisms (e.g., tissue-specific insulin resistance, insulin clearance, and insulin secretion), non-alcoholic fatty liver disease (NAFLD), and glomerular filtration rate (GFR). We found prominent heterogeneity within two optimal clusters, mainly representing normometabolism (Cluster-I) or insulin resistance and NAFLD (Cluster-II), at higher granularity. This was illustrated by sub-clusters showing similar NAFLD prevalence but differentiated by glycemia, FFA, and GFR (Cluster-II). Sub-clusters with similar glycemia and FFA showed dissimilar insulin clearance and secretion (Cluster-I). This work reveals that T2D heterogeneity can be captured by a thorough metabolic milieu and mechanisms profiling-metabolic footprint. It is expected that deeper phenotyping and increased pathophysiology knowledge will allow to identify subject's multidimensional profile, predict their progression, and treat them towards precision medicine. |
id |
RCAP_b2878aaaa91386076fa932306088144c |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/105040 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Metabolic Footprint, towards Understanding Type 2 Diabetes beyond GlycemiadiabetesheterogeneityclusteringdysmetabolismSDG 3 - Good Health and Well-beingType 2 diabetes (T2D) heterogeneity is a major determinant of complications risk and treatment response. Using cluster analysis, we aimed to stratify glycemia within metabolic multidimensionality and extract pathophysiological insights out of metabolic profiling. We performed a cluster analysis to stratify 974 subjects (PREVADIAB2 cohort) with normoglycemia, prediabetes, or non-treated diabetes. The algorithm was informed by age, anthropometry, and metabolic milieu (glucose, insulin, C-peptide, and free fatty acid (FFA) levels during the oral glucose tolerance test OGTT). For cluster profiling, we additionally used indexes of metabolism mechanisms (e.g., tissue-specific insulin resistance, insulin clearance, and insulin secretion), non-alcoholic fatty liver disease (NAFLD), and glomerular filtration rate (GFR). We found prominent heterogeneity within two optimal clusters, mainly representing normometabolism (Cluster-I) or insulin resistance and NAFLD (Cluster-II), at higher granularity. This was illustrated by sub-clusters showing similar NAFLD prevalence but differentiated by glycemia, FFA, and GFR (Cluster-II). Sub-clusters with similar glycemia and FFA showed dissimilar insulin clearance and secretion (Cluster-I). This work reveals that T2D heterogeneity can be captured by a thorough metabolic milieu and mechanisms profiling-metabolic footprint. It is expected that deeper phenotyping and increased pathophysiology knowledge will allow to identify subject's multidimensional profile, predict their progression, and treat them towards precision medicine.Centro de Estudos de Doenças Crónicas (CEDOC)NOVA Medical School|Faculdade de Ciências Médicas (NMS|FCM)NOVA Information Management School (NOVA IMS)Information Management Research Center (MagIC) - NOVA Information Management SchoolRUNPina, Ana Lúcia F.Patarrao, Rita S.Ribeiro, Rogerio T.Penha-Goncalves, CarlosRaposo, Joao F.Gardete-Correia, LuisDuarte, RuiM. Boavida, JoseL. Medina, JoseHenriques, RobertoMacedo, Maria P.2020-10-01T22:53:26Z2020-082020-08-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10362/105040eng2077-0383PURE: 25950996https://doi.org/10.3390/jcm9082588info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T04:50:30Zoai:run.unl.pt:10362/105040Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:40:24.053578Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Metabolic Footprint, towards Understanding Type 2 Diabetes beyond Glycemia |
title |
Metabolic Footprint, towards Understanding Type 2 Diabetes beyond Glycemia |
spellingShingle |
Metabolic Footprint, towards Understanding Type 2 Diabetes beyond Glycemia Pina, Ana Lúcia F. diabetes heterogeneity clustering dysmetabolism SDG 3 - Good Health and Well-being |
title_short |
Metabolic Footprint, towards Understanding Type 2 Diabetes beyond Glycemia |
title_full |
Metabolic Footprint, towards Understanding Type 2 Diabetes beyond Glycemia |
title_fullStr |
Metabolic Footprint, towards Understanding Type 2 Diabetes beyond Glycemia |
title_full_unstemmed |
Metabolic Footprint, towards Understanding Type 2 Diabetes beyond Glycemia |
title_sort |
Metabolic Footprint, towards Understanding Type 2 Diabetes beyond Glycemia |
author |
Pina, Ana Lúcia F. |
author_facet |
Pina, Ana Lúcia F. Patarrao, Rita S. Ribeiro, Rogerio T. Penha-Goncalves, Carlos Raposo, Joao F. Gardete-Correia, Luis Duarte, Rui M. Boavida, Jose L. Medina, Jose Henriques, Roberto Macedo, Maria P. |
author_role |
author |
author2 |
Patarrao, Rita S. Ribeiro, Rogerio T. Penha-Goncalves, Carlos Raposo, Joao F. Gardete-Correia, Luis Duarte, Rui M. Boavida, Jose L. Medina, Jose Henriques, Roberto Macedo, Maria P. |
author2_role |
author author author author author author author author author author |
dc.contributor.none.fl_str_mv |
Centro de Estudos de Doenças Crónicas (CEDOC) NOVA Medical School|Faculdade de Ciências Médicas (NMS|FCM) NOVA Information Management School (NOVA IMS) Information Management Research Center (MagIC) - NOVA Information Management School RUN |
dc.contributor.author.fl_str_mv |
Pina, Ana Lúcia F. Patarrao, Rita S. Ribeiro, Rogerio T. Penha-Goncalves, Carlos Raposo, Joao F. Gardete-Correia, Luis Duarte, Rui M. Boavida, Jose L. Medina, Jose Henriques, Roberto Macedo, Maria P. |
dc.subject.por.fl_str_mv |
diabetes heterogeneity clustering dysmetabolism SDG 3 - Good Health and Well-being |
topic |
diabetes heterogeneity clustering dysmetabolism SDG 3 - Good Health and Well-being |
description |
Type 2 diabetes (T2D) heterogeneity is a major determinant of complications risk and treatment response. Using cluster analysis, we aimed to stratify glycemia within metabolic multidimensionality and extract pathophysiological insights out of metabolic profiling. We performed a cluster analysis to stratify 974 subjects (PREVADIAB2 cohort) with normoglycemia, prediabetes, or non-treated diabetes. The algorithm was informed by age, anthropometry, and metabolic milieu (glucose, insulin, C-peptide, and free fatty acid (FFA) levels during the oral glucose tolerance test OGTT). For cluster profiling, we additionally used indexes of metabolism mechanisms (e.g., tissue-specific insulin resistance, insulin clearance, and insulin secretion), non-alcoholic fatty liver disease (NAFLD), and glomerular filtration rate (GFR). We found prominent heterogeneity within two optimal clusters, mainly representing normometabolism (Cluster-I) or insulin resistance and NAFLD (Cluster-II), at higher granularity. This was illustrated by sub-clusters showing similar NAFLD prevalence but differentiated by glycemia, FFA, and GFR (Cluster-II). Sub-clusters with similar glycemia and FFA showed dissimilar insulin clearance and secretion (Cluster-I). This work reveals that T2D heterogeneity can be captured by a thorough metabolic milieu and mechanisms profiling-metabolic footprint. It is expected that deeper phenotyping and increased pathophysiology knowledge will allow to identify subject's multidimensional profile, predict their progression, and treat them towards precision medicine. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-10-01T22:53:26Z 2020-08 2020-08-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/105040 |
url |
http://hdl.handle.net/10362/105040 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2077-0383 PURE: 25950996 https://doi.org/10.3390/jcm9082588 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138019316334592 |