Metabolic Footprint, towards Understanding Type 2 Diabetes beyond Glycemia

Detalhes bibliográficos
Autor(a) principal: Pina, Ana Lúcia F.
Data de Publicação: 2020
Outros Autores: Patarrao, Rita S., Ribeiro, Rogerio T., Penha-Goncalves, Carlos, Raposo, Joao F., Gardete-Correia, Luis, Duarte, Rui, M. Boavida, Jose, L. Medina, Jose, Henriques, Roberto, Macedo, Maria P.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10362/105040
Resumo: Type 2 diabetes (T2D) heterogeneity is a major determinant of complications risk and treatment response. Using cluster analysis, we aimed to stratify glycemia within metabolic multidimensionality and extract pathophysiological insights out of metabolic profiling. We performed a cluster analysis to stratify 974 subjects (PREVADIAB2 cohort) with normoglycemia, prediabetes, or non-treated diabetes. The algorithm was informed by age, anthropometry, and metabolic milieu (glucose, insulin, C-peptide, and free fatty acid (FFA) levels during the oral glucose tolerance test OGTT). For cluster profiling, we additionally used indexes of metabolism mechanisms (e.g., tissue-specific insulin resistance, insulin clearance, and insulin secretion), non-alcoholic fatty liver disease (NAFLD), and glomerular filtration rate (GFR). We found prominent heterogeneity within two optimal clusters, mainly representing normometabolism (Cluster-I) or insulin resistance and NAFLD (Cluster-II), at higher granularity. This was illustrated by sub-clusters showing similar NAFLD prevalence but differentiated by glycemia, FFA, and GFR (Cluster-II). Sub-clusters with similar glycemia and FFA showed dissimilar insulin clearance and secretion (Cluster-I). This work reveals that T2D heterogeneity can be captured by a thorough metabolic milieu and mechanisms profiling-metabolic footprint. It is expected that deeper phenotyping and increased pathophysiology knowledge will allow to identify subject's multidimensional profile, predict their progression, and treat them towards precision medicine.
id RCAP_b2878aaaa91386076fa932306088144c
oai_identifier_str oai:run.unl.pt:10362/105040
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Metabolic Footprint, towards Understanding Type 2 Diabetes beyond GlycemiadiabetesheterogeneityclusteringdysmetabolismSDG 3 - Good Health and Well-beingType 2 diabetes (T2D) heterogeneity is a major determinant of complications risk and treatment response. Using cluster analysis, we aimed to stratify glycemia within metabolic multidimensionality and extract pathophysiological insights out of metabolic profiling. We performed a cluster analysis to stratify 974 subjects (PREVADIAB2 cohort) with normoglycemia, prediabetes, or non-treated diabetes. The algorithm was informed by age, anthropometry, and metabolic milieu (glucose, insulin, C-peptide, and free fatty acid (FFA) levels during the oral glucose tolerance test OGTT). For cluster profiling, we additionally used indexes of metabolism mechanisms (e.g., tissue-specific insulin resistance, insulin clearance, and insulin secretion), non-alcoholic fatty liver disease (NAFLD), and glomerular filtration rate (GFR). We found prominent heterogeneity within two optimal clusters, mainly representing normometabolism (Cluster-I) or insulin resistance and NAFLD (Cluster-II), at higher granularity. This was illustrated by sub-clusters showing similar NAFLD prevalence but differentiated by glycemia, FFA, and GFR (Cluster-II). Sub-clusters with similar glycemia and FFA showed dissimilar insulin clearance and secretion (Cluster-I). This work reveals that T2D heterogeneity can be captured by a thorough metabolic milieu and mechanisms profiling-metabolic footprint. It is expected that deeper phenotyping and increased pathophysiology knowledge will allow to identify subject's multidimensional profile, predict their progression, and treat them towards precision medicine.Centro de Estudos de Doenças Crónicas (CEDOC)NOVA Medical School|Faculdade de Ciências Médicas (NMS|FCM)NOVA Information Management School (NOVA IMS)Information Management Research Center (MagIC) - NOVA Information Management SchoolRUNPina, Ana Lúcia F.Patarrao, Rita S.Ribeiro, Rogerio T.Penha-Goncalves, CarlosRaposo, Joao F.Gardete-Correia, LuisDuarte, RuiM. Boavida, JoseL. Medina, JoseHenriques, RobertoMacedo, Maria P.2020-10-01T22:53:26Z2020-082020-08-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10362/105040eng2077-0383PURE: 25950996https://doi.org/10.3390/jcm9082588info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T04:50:30Zoai:run.unl.pt:10362/105040Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:40:24.053578Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Metabolic Footprint, towards Understanding Type 2 Diabetes beyond Glycemia
title Metabolic Footprint, towards Understanding Type 2 Diabetes beyond Glycemia
spellingShingle Metabolic Footprint, towards Understanding Type 2 Diabetes beyond Glycemia
Pina, Ana Lúcia F.
diabetes
heterogeneity
clustering
dysmetabolism
SDG 3 - Good Health and Well-being
title_short Metabolic Footprint, towards Understanding Type 2 Diabetes beyond Glycemia
title_full Metabolic Footprint, towards Understanding Type 2 Diabetes beyond Glycemia
title_fullStr Metabolic Footprint, towards Understanding Type 2 Diabetes beyond Glycemia
title_full_unstemmed Metabolic Footprint, towards Understanding Type 2 Diabetes beyond Glycemia
title_sort Metabolic Footprint, towards Understanding Type 2 Diabetes beyond Glycemia
author Pina, Ana Lúcia F.
author_facet Pina, Ana Lúcia F.
Patarrao, Rita S.
Ribeiro, Rogerio T.
Penha-Goncalves, Carlos
Raposo, Joao F.
Gardete-Correia, Luis
Duarte, Rui
M. Boavida, Jose
L. Medina, Jose
Henriques, Roberto
Macedo, Maria P.
author_role author
author2 Patarrao, Rita S.
Ribeiro, Rogerio T.
Penha-Goncalves, Carlos
Raposo, Joao F.
Gardete-Correia, Luis
Duarte, Rui
M. Boavida, Jose
L. Medina, Jose
Henriques, Roberto
Macedo, Maria P.
author2_role author
author
author
author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv Centro de Estudos de Doenças Crónicas (CEDOC)
NOVA Medical School|Faculdade de Ciências Médicas (NMS|FCM)
NOVA Information Management School (NOVA IMS)
Information Management Research Center (MagIC) - NOVA Information Management School
RUN
dc.contributor.author.fl_str_mv Pina, Ana Lúcia F.
Patarrao, Rita S.
Ribeiro, Rogerio T.
Penha-Goncalves, Carlos
Raposo, Joao F.
Gardete-Correia, Luis
Duarte, Rui
M. Boavida, Jose
L. Medina, Jose
Henriques, Roberto
Macedo, Maria P.
dc.subject.por.fl_str_mv diabetes
heterogeneity
clustering
dysmetabolism
SDG 3 - Good Health and Well-being
topic diabetes
heterogeneity
clustering
dysmetabolism
SDG 3 - Good Health and Well-being
description Type 2 diabetes (T2D) heterogeneity is a major determinant of complications risk and treatment response. Using cluster analysis, we aimed to stratify glycemia within metabolic multidimensionality and extract pathophysiological insights out of metabolic profiling. We performed a cluster analysis to stratify 974 subjects (PREVADIAB2 cohort) with normoglycemia, prediabetes, or non-treated diabetes. The algorithm was informed by age, anthropometry, and metabolic milieu (glucose, insulin, C-peptide, and free fatty acid (FFA) levels during the oral glucose tolerance test OGTT). For cluster profiling, we additionally used indexes of metabolism mechanisms (e.g., tissue-specific insulin resistance, insulin clearance, and insulin secretion), non-alcoholic fatty liver disease (NAFLD), and glomerular filtration rate (GFR). We found prominent heterogeneity within two optimal clusters, mainly representing normometabolism (Cluster-I) or insulin resistance and NAFLD (Cluster-II), at higher granularity. This was illustrated by sub-clusters showing similar NAFLD prevalence but differentiated by glycemia, FFA, and GFR (Cluster-II). Sub-clusters with similar glycemia and FFA showed dissimilar insulin clearance and secretion (Cluster-I). This work reveals that T2D heterogeneity can be captured by a thorough metabolic milieu and mechanisms profiling-metabolic footprint. It is expected that deeper phenotyping and increased pathophysiology knowledge will allow to identify subject's multidimensional profile, predict their progression, and treat them towards precision medicine.
publishDate 2020
dc.date.none.fl_str_mv 2020-10-01T22:53:26Z
2020-08
2020-08-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/105040
url http://hdl.handle.net/10362/105040
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 2077-0383
PURE: 25950996
https://doi.org/10.3390/jcm9082588
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799138019316334592