A Regularized Mixture of Linear Experts for Quality Prediction in Multimode and Multiphase Industrial Processes

Detalhes bibliográficos
Autor(a) principal: Souza, Francisco
Data de Publicação: 2021
Outros Autores: Mendes, Jérôme, Araújo, Rui
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10316/103702
https://doi.org/10.3390/app11052040
Resumo: This paper proposes the use of a regularized mixture of linear experts (MoLE) for predictive modeling in multimode-multiphase industrial processes. For this purpose, different regularized MoLE were evaluated, namely, through the elastic net (EN), Lasso, and ridge regression (RR) penalties. Their performances were compared when trained with different numbers of samples, and in comparison to other nonlinear predictive models. The models were evaluated on real multiphase polymerization process data. The Lasso penalty provided the best performance among all regularizers for MoLE, even when trained with a small number of samples.
id RCAP_b2db383e4e8aa5b3bc112f57b9af58e3
oai_identifier_str oai:estudogeral.uc.pt:10316/103702
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling A Regularized Mixture of Linear Experts for Quality Prediction in Multimode and Multiphase Industrial Processesmultimode processmultiphase processmixture of expertspolymerizationThis paper proposes the use of a regularized mixture of linear experts (MoLE) for predictive modeling in multimode-multiphase industrial processes. For this purpose, different regularized MoLE were evaluated, namely, through the elastic net (EN), Lasso, and ridge regression (RR) penalties. Their performances were compared when trained with different numbers of samples, and in comparison to other nonlinear predictive models. The models were evaluated on real multiphase polymerization process data. The Lasso penalty provided the best performance among all regularizers for MoLE, even when trained with a small number of samples.MDPI2021info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10316/103702http://hdl.handle.net/10316/103702https://doi.org/10.3390/app11052040eng2076-3417Souza, FranciscoMendes, JérômeAraújo, Ruiinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2022-11-22T21:44:53Zoai:estudogeral.uc.pt:10316/103702Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T21:20:29.469097Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv A Regularized Mixture of Linear Experts for Quality Prediction in Multimode and Multiphase Industrial Processes
title A Regularized Mixture of Linear Experts for Quality Prediction in Multimode and Multiphase Industrial Processes
spellingShingle A Regularized Mixture of Linear Experts for Quality Prediction in Multimode and Multiphase Industrial Processes
Souza, Francisco
multimode process
multiphase process
mixture of experts
polymerization
title_short A Regularized Mixture of Linear Experts for Quality Prediction in Multimode and Multiphase Industrial Processes
title_full A Regularized Mixture of Linear Experts for Quality Prediction in Multimode and Multiphase Industrial Processes
title_fullStr A Regularized Mixture of Linear Experts for Quality Prediction in Multimode and Multiphase Industrial Processes
title_full_unstemmed A Regularized Mixture of Linear Experts for Quality Prediction in Multimode and Multiphase Industrial Processes
title_sort A Regularized Mixture of Linear Experts for Quality Prediction in Multimode and Multiphase Industrial Processes
author Souza, Francisco
author_facet Souza, Francisco
Mendes, Jérôme
Araújo, Rui
author_role author
author2 Mendes, Jérôme
Araújo, Rui
author2_role author
author
dc.contributor.author.fl_str_mv Souza, Francisco
Mendes, Jérôme
Araújo, Rui
dc.subject.por.fl_str_mv multimode process
multiphase process
mixture of experts
polymerization
topic multimode process
multiphase process
mixture of experts
polymerization
description This paper proposes the use of a regularized mixture of linear experts (MoLE) for predictive modeling in multimode-multiphase industrial processes. For this purpose, different regularized MoLE were evaluated, namely, through the elastic net (EN), Lasso, and ridge regression (RR) penalties. Their performances were compared when trained with different numbers of samples, and in comparison to other nonlinear predictive models. The models were evaluated on real multiphase polymerization process data. The Lasso penalty provided the best performance among all regularizers for MoLE, even when trained with a small number of samples.
publishDate 2021
dc.date.none.fl_str_mv 2021
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10316/103702
http://hdl.handle.net/10316/103702
https://doi.org/10.3390/app11052040
url http://hdl.handle.net/10316/103702
https://doi.org/10.3390/app11052040
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 2076-3417
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv MDPI
publisher.none.fl_str_mv MDPI
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799134097245732864