A Regularized Mixture of Linear Experts for Quality Prediction in Multimode and Multiphase Industrial Processes
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10316/103702 https://doi.org/10.3390/app11052040 |
Resumo: | This paper proposes the use of a regularized mixture of linear experts (MoLE) for predictive modeling in multimode-multiphase industrial processes. For this purpose, different regularized MoLE were evaluated, namely, through the elastic net (EN), Lasso, and ridge regression (RR) penalties. Their performances were compared when trained with different numbers of samples, and in comparison to other nonlinear predictive models. The models were evaluated on real multiphase polymerization process data. The Lasso penalty provided the best performance among all regularizers for MoLE, even when trained with a small number of samples. |
id |
RCAP_b2db383e4e8aa5b3bc112f57b9af58e3 |
---|---|
oai_identifier_str |
oai:estudogeral.uc.pt:10316/103702 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
A Regularized Mixture of Linear Experts for Quality Prediction in Multimode and Multiphase Industrial Processesmultimode processmultiphase processmixture of expertspolymerizationThis paper proposes the use of a regularized mixture of linear experts (MoLE) for predictive modeling in multimode-multiphase industrial processes. For this purpose, different regularized MoLE were evaluated, namely, through the elastic net (EN), Lasso, and ridge regression (RR) penalties. Their performances were compared when trained with different numbers of samples, and in comparison to other nonlinear predictive models. The models were evaluated on real multiphase polymerization process data. The Lasso penalty provided the best performance among all regularizers for MoLE, even when trained with a small number of samples.MDPI2021info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10316/103702http://hdl.handle.net/10316/103702https://doi.org/10.3390/app11052040eng2076-3417Souza, FranciscoMendes, JérômeAraújo, Ruiinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2022-11-22T21:44:53Zoai:estudogeral.uc.pt:10316/103702Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T21:20:29.469097Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
A Regularized Mixture of Linear Experts for Quality Prediction in Multimode and Multiphase Industrial Processes |
title |
A Regularized Mixture of Linear Experts for Quality Prediction in Multimode and Multiphase Industrial Processes |
spellingShingle |
A Regularized Mixture of Linear Experts for Quality Prediction in Multimode and Multiphase Industrial Processes Souza, Francisco multimode process multiphase process mixture of experts polymerization |
title_short |
A Regularized Mixture of Linear Experts for Quality Prediction in Multimode and Multiphase Industrial Processes |
title_full |
A Regularized Mixture of Linear Experts for Quality Prediction in Multimode and Multiphase Industrial Processes |
title_fullStr |
A Regularized Mixture of Linear Experts for Quality Prediction in Multimode and Multiphase Industrial Processes |
title_full_unstemmed |
A Regularized Mixture of Linear Experts for Quality Prediction in Multimode and Multiphase Industrial Processes |
title_sort |
A Regularized Mixture of Linear Experts for Quality Prediction in Multimode and Multiphase Industrial Processes |
author |
Souza, Francisco |
author_facet |
Souza, Francisco Mendes, Jérôme Araújo, Rui |
author_role |
author |
author2 |
Mendes, Jérôme Araújo, Rui |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Souza, Francisco Mendes, Jérôme Araújo, Rui |
dc.subject.por.fl_str_mv |
multimode process multiphase process mixture of experts polymerization |
topic |
multimode process multiphase process mixture of experts polymerization |
description |
This paper proposes the use of a regularized mixture of linear experts (MoLE) for predictive modeling in multimode-multiphase industrial processes. For this purpose, different regularized MoLE were evaluated, namely, through the elastic net (EN), Lasso, and ridge regression (RR) penalties. Their performances were compared when trained with different numbers of samples, and in comparison to other nonlinear predictive models. The models were evaluated on real multiphase polymerization process data. The Lasso penalty provided the best performance among all regularizers for MoLE, even when trained with a small number of samples. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10316/103702 http://hdl.handle.net/10316/103702 https://doi.org/10.3390/app11052040 |
url |
http://hdl.handle.net/10316/103702 https://doi.org/10.3390/app11052040 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2076-3417 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
MDPI |
publisher.none.fl_str_mv |
MDPI |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799134097245732864 |