Doherty amplifier and antenna combiner
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/25033 |
Resumo: | The conventional Doherty architecture is commonly used in wireless transmitters for its ability to boost the average efficiency of a traditional single-ended class B amplifier. It consists of two parallel single-ended amplifying branches (named carrier and peaking amplifiers) which are linked, at the output, through a /4 combiner. This output combiner commonly has a significant impact on the overall bandwidth, as it is usually built from a transmission line structure with tuned dimensions. Other non-conventional combining structures could be designed, targeting a wider bandwidth, contributing to an overall increase of the Doherty amplifier’s bandwidth. Being this an high relevance research topic for the development of high efficient and broadband amplifiers, it is highly desirable to have a laboratory setup that implements a Doherty power amplifier to which distinct output combiner structures can be connected and tested. In that sense, the design of two single-ended amplifiers (the carrier and the peaking) was performed in a circuit simulator (ADS, from Keysight) together with the input power divider that compose the Doherty architecture. The Doherty amplifier main board was designed to incorporate the carrier and peaking amplifiers, and also the power splitter at the input, and it was prepared so that it could be connected to any desired combiner to be tested. A traditional Doherty power combiner was designed and both boards (Doherty amplifier and the combiner) were produced, connected and tested in the RF laboratory. The measured amplifier presented the typical caractheristics of a Doherty amplifier with nearly 75% of drain efficiency at full-power, and nearly 50% at the output back-off level. In addition, a second combiner unit was designed with two purposes. The first was to demonstrate the operation of the designed Doherty amplifier with a distinct output combiner, showing that, as intended in this work, it is suited to test multiple combiner structures. The second objective was to serve as preliminary test to evaluate the possibility of merging the output combiner with the antenna element. Taking advantage of the electromagnetic coupling between antennas, this second combiner structure uses two antenna elements that were tuned to simultaneously behave as output combiner of the Doherty amplifier and a radiating element. |
id |
RCAP_b33d32e51ca251cba04e91d9a982a28d |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/25033 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Doherty amplifier and antenna combinerPower amplifiersDoherty amplifierRadio frequencyGaN transistorsDynamic load modulationThe conventional Doherty architecture is commonly used in wireless transmitters for its ability to boost the average efficiency of a traditional single-ended class B amplifier. It consists of two parallel single-ended amplifying branches (named carrier and peaking amplifiers) which are linked, at the output, through a /4 combiner. This output combiner commonly has a significant impact on the overall bandwidth, as it is usually built from a transmission line structure with tuned dimensions. Other non-conventional combining structures could be designed, targeting a wider bandwidth, contributing to an overall increase of the Doherty amplifier’s bandwidth. Being this an high relevance research topic for the development of high efficient and broadband amplifiers, it is highly desirable to have a laboratory setup that implements a Doherty power amplifier to which distinct output combiner structures can be connected and tested. In that sense, the design of two single-ended amplifiers (the carrier and the peaking) was performed in a circuit simulator (ADS, from Keysight) together with the input power divider that compose the Doherty architecture. The Doherty amplifier main board was designed to incorporate the carrier and peaking amplifiers, and also the power splitter at the input, and it was prepared so that it could be connected to any desired combiner to be tested. A traditional Doherty power combiner was designed and both boards (Doherty amplifier and the combiner) were produced, connected and tested in the RF laboratory. The measured amplifier presented the typical caractheristics of a Doherty amplifier with nearly 75% of drain efficiency at full-power, and nearly 50% at the output back-off level. In addition, a second combiner unit was designed with two purposes. The first was to demonstrate the operation of the designed Doherty amplifier with a distinct output combiner, showing that, as intended in this work, it is suited to test multiple combiner structures. The second objective was to serve as preliminary test to evaluate the possibility of merging the output combiner with the antenna element. Taking advantage of the electromagnetic coupling between antennas, this second combiner structure uses two antenna elements that were tuned to simultaneously behave as output combiner of the Doherty amplifier and a radiating element.A arquitetura Doherty convencional é tipicamente utilizada em transmissores sem fios pela sua capacidade de aumentar a eficiência média de um tradicional amplificador em classe B. O amplificador Doherty consiste em dois amplificadores em paralelo (chamados de amplificadores carrier e peaking) que são ligados, na saída, através de um combinador de /4. Este combinador de saída geralmente tem um impacto significativo na largura de banda do amplificador, pois é tipicamente construído a partir de uma estrutura de linhas de transmissão com dimensões ajustadas para uma frequência. Outras estruturas de combinadores não convencionais podem ser projetadas, visando uma largura de banda maior, contribuindo para um aumento geral da largura de banda do amplificador Doherty. Sendo este um tópico de investigação de elevada relevância para o desenvolvimento de amplificadores de alta eficiência e largura de banda, seria interessante ter um setup de laboratório que implemente um amplificador de potência Doherty para o qual estruturas combinadoras distintas possam ser ligadas à saída do amplificador e testadas. Nesse sentido, o projeto de dois amplificadores (carrier e peaking) foi realizado num simulador de circuitos (ADS, da Keysight) junto com o divisor de potência de entrada que compõe a arquitetura Doherty. A placa principal do amplificador Doherty foi projetada para incorporar os amplificadores carrier e peaking, e também o divisor de potência na entrada, e foi preparada de modo que pudesse ser ligada a qualquer combinador desejado a ser testado. Um combinador de potência Doherty tradicional foi projetado e ambas as placas (amplificador Doherty e o combinador) foram produzidas, soldadas e testadas no laboratório de RF. O amplificador medido apresentou as características típicas de um amplificador Doherty com aproximadamente 75% de eficiência de dreno na potência máxima e aproximadamente 50% no ponto de output back-off. Além disso, foi projetado um segundo combinador com dois objetivos. O primeiro foi demonstrar o funcionamento do amplificador Doherty projetado com um combinador de saída distinto, mostrando que, como pretendido neste trabalho, o amplificador desenhado é adequado para testar múltiplas estruturas combinadoras. O segundo objetivo foi servir como teste preliminar para avaliar a possibilidade de fundir o combinador de saída com a antena. Aproveitando o acoplamento eletromagnético entre antenas, esta segunda estrutura combinadora utiliza duas antenas que foram projetadas para se comportarem simultaneamente como combinador de saída do amplificador Doherty e como elemento radiante.2019-01-10T11:55:25Z2018-07-11T00:00:00Z2018-07-11info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/25033TID:202241696engPereira, Joana Lopes Silvainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-05-06T04:18:42Zoai:ria.ua.pt:10773/25033Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-05-06T04:18:42Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Doherty amplifier and antenna combiner |
title |
Doherty amplifier and antenna combiner |
spellingShingle |
Doherty amplifier and antenna combiner Pereira, Joana Lopes Silva Power amplifiers Doherty amplifier Radio frequency GaN transistors Dynamic load modulation |
title_short |
Doherty amplifier and antenna combiner |
title_full |
Doherty amplifier and antenna combiner |
title_fullStr |
Doherty amplifier and antenna combiner |
title_full_unstemmed |
Doherty amplifier and antenna combiner |
title_sort |
Doherty amplifier and antenna combiner |
author |
Pereira, Joana Lopes Silva |
author_facet |
Pereira, Joana Lopes Silva |
author_role |
author |
dc.contributor.author.fl_str_mv |
Pereira, Joana Lopes Silva |
dc.subject.por.fl_str_mv |
Power amplifiers Doherty amplifier Radio frequency GaN transistors Dynamic load modulation |
topic |
Power amplifiers Doherty amplifier Radio frequency GaN transistors Dynamic load modulation |
description |
The conventional Doherty architecture is commonly used in wireless transmitters for its ability to boost the average efficiency of a traditional single-ended class B amplifier. It consists of two parallel single-ended amplifying branches (named carrier and peaking amplifiers) which are linked, at the output, through a /4 combiner. This output combiner commonly has a significant impact on the overall bandwidth, as it is usually built from a transmission line structure with tuned dimensions. Other non-conventional combining structures could be designed, targeting a wider bandwidth, contributing to an overall increase of the Doherty amplifier’s bandwidth. Being this an high relevance research topic for the development of high efficient and broadband amplifiers, it is highly desirable to have a laboratory setup that implements a Doherty power amplifier to which distinct output combiner structures can be connected and tested. In that sense, the design of two single-ended amplifiers (the carrier and the peaking) was performed in a circuit simulator (ADS, from Keysight) together with the input power divider that compose the Doherty architecture. The Doherty amplifier main board was designed to incorporate the carrier and peaking amplifiers, and also the power splitter at the input, and it was prepared so that it could be connected to any desired combiner to be tested. A traditional Doherty power combiner was designed and both boards (Doherty amplifier and the combiner) were produced, connected and tested in the RF laboratory. The measured amplifier presented the typical caractheristics of a Doherty amplifier with nearly 75% of drain efficiency at full-power, and nearly 50% at the output back-off level. In addition, a second combiner unit was designed with two purposes. The first was to demonstrate the operation of the designed Doherty amplifier with a distinct output combiner, showing that, as intended in this work, it is suited to test multiple combiner structures. The second objective was to serve as preliminary test to evaluate the possibility of merging the output combiner with the antenna element. Taking advantage of the electromagnetic coupling between antennas, this second combiner structure uses two antenna elements that were tuned to simultaneously behave as output combiner of the Doherty amplifier and a radiating element. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-07-11T00:00:00Z 2018-07-11 2019-01-10T11:55:25Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/25033 TID:202241696 |
url |
http://hdl.handle.net/10773/25033 |
identifier_str_mv |
TID:202241696 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
mluisa.alvim@gmail.com |
_version_ |
1817543698257281024 |