Exploring the Levinthal limit in protein folding
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.1/11624 |
Resumo: | According to the thermodynamic hypothesis, the native state of proteins is uniquely defined by their amino acid sequence. On the other hand, according to Levinthal, the native state is just a local minimum of the free energy and a given amino acid sequence, in the same thermodynamic conditions, can assume many, very different structures that are as thermodynamically stable as the native state. This is the Levinthal limit explored in this work. Using computer simulations, we compare the interactions that stabilize the native state of four different proteins with those that stabilize three non-native states of each protein and find that the nature of the interactions is very similar for all such 16 conformers. Furthermore, an enhancement of the degree of fluctuation of the non-native conformers can be explained by an insufficient relaxation to their local free energy minimum. These results favor Levinthal's hypothesis that protein folding is a kinetic non-equilibrium process. |
id |
RCAP_b3ba70b47081487cce8a05f55bb78ac9 |
---|---|
oai_identifier_str |
oai:sapientia.ualg.pt:10400.1/11624 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Exploring the Levinthal limit in protein foldingMolecular SimulationCrystal-StructuresDomainConformationsPathwaysDynamicsAccording to the thermodynamic hypothesis, the native state of proteins is uniquely defined by their amino acid sequence. On the other hand, according to Levinthal, the native state is just a local minimum of the free energy and a given amino acid sequence, in the same thermodynamic conditions, can assume many, very different structures that are as thermodynamically stable as the native state. This is the Levinthal limit explored in this work. Using computer simulations, we compare the interactions that stabilize the native state of four different proteins with those that stabilize three non-native states of each protein and find that the nature of the interactions is very similar for all such 16 conformers. Furthermore, an enhancement of the degree of fluctuation of the non-native conformers can be explained by an insufficient relaxation to their local free energy minimum. These results favor Levinthal's hypothesis that protein folding is a kinetic non-equilibrium process.FCT - Foundation for Science and Technology, Portugal [UID/Multi/04326/2013]; Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP); Conselho Nacional de Desenvolvimento Cientia co e Tecnologico (CNPq)SpringerSapientiaCruzeiro, LeonorDegreve, Leo2018-12-07T14:53:39Z2017-032017-03-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.1/11624eng0092-060610.1007/s10867-016-9431-6info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-24T10:23:28Zoai:sapientia.ualg.pt:10400.1/11624Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:03:06.454534Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Exploring the Levinthal limit in protein folding |
title |
Exploring the Levinthal limit in protein folding |
spellingShingle |
Exploring the Levinthal limit in protein folding Cruzeiro, Leonor Molecular Simulation Crystal-Structures Domain Conformations Pathways Dynamics |
title_short |
Exploring the Levinthal limit in protein folding |
title_full |
Exploring the Levinthal limit in protein folding |
title_fullStr |
Exploring the Levinthal limit in protein folding |
title_full_unstemmed |
Exploring the Levinthal limit in protein folding |
title_sort |
Exploring the Levinthal limit in protein folding |
author |
Cruzeiro, Leonor |
author_facet |
Cruzeiro, Leonor Degreve, Leo |
author_role |
author |
author2 |
Degreve, Leo |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Sapientia |
dc.contributor.author.fl_str_mv |
Cruzeiro, Leonor Degreve, Leo |
dc.subject.por.fl_str_mv |
Molecular Simulation Crystal-Structures Domain Conformations Pathways Dynamics |
topic |
Molecular Simulation Crystal-Structures Domain Conformations Pathways Dynamics |
description |
According to the thermodynamic hypothesis, the native state of proteins is uniquely defined by their amino acid sequence. On the other hand, according to Levinthal, the native state is just a local minimum of the free energy and a given amino acid sequence, in the same thermodynamic conditions, can assume many, very different structures that are as thermodynamically stable as the native state. This is the Levinthal limit explored in this work. Using computer simulations, we compare the interactions that stabilize the native state of four different proteins with those that stabilize three non-native states of each protein and find that the nature of the interactions is very similar for all such 16 conformers. Furthermore, an enhancement of the degree of fluctuation of the non-native conformers can be explained by an insufficient relaxation to their local free energy minimum. These results favor Levinthal's hypothesis that protein folding is a kinetic non-equilibrium process. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-03 2017-03-01T00:00:00Z 2018-12-07T14:53:39Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.1/11624 |
url |
http://hdl.handle.net/10400.1/11624 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0092-0606 10.1007/s10867-016-9431-6 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799133265283514368 |