The Impacts of Open Data and eXplainable AI on Real Estate Price Predictions in Smart Cities
Autor(a) principal: | |
---|---|
Data de Publicação: | 2024 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/164626 |
Resumo: | Neves, F. T., Aparicio, M., & Neto, M. D. C. (2024). The Impacts of Open Data and eXplainable AI on Real Estate Price Predictions in Smart Cities. Applied Sciences, 14(5), 1-40. Article 2209. https://doi.org/10.3390/app14052209 --- This research was funded by FCT—Fundação para a Ciência e Tecnologia, I.P. (Portugal), under research grant UIDB/04152/2020—Centro de Investigação em Gestão de Informação (MagIC). The authors would like to express their gratitude to Confidencial Imobiliário for graciously providing the real estate transactions data that supported this work. |
id |
RCAP_b4505325dd0ef129b712107f12d25a04 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/164626 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
The Impacts of Open Data and eXplainable AI on Real Estate Price Predictions in Smart Citiesopen datasmart citiesreal estate predictionsurban developmentartificial intelligencemachine learningeXplainable AIXGBoostOptunahapley additive explanations (SHAP)SDG 8 - Decent Work and Economic GrowthSDG 11 - Sustainable Cities and CommunitiesNeves, F. T., Aparicio, M., & Neto, M. D. C. (2024). The Impacts of Open Data and eXplainable AI on Real Estate Price Predictions in Smart Cities. Applied Sciences, 14(5), 1-40. Article 2209. https://doi.org/10.3390/app14052209 --- This research was funded by FCT—Fundação para a Ciência e Tecnologia, I.P. (Portugal), under research grant UIDB/04152/2020—Centro de Investigação em Gestão de Informação (MagIC). The authors would like to express their gratitude to Confidencial Imobiliário for graciously providing the real estate transactions data that supported this work.In the rapidly evolving landscape of urban development, where smart cities increasingly rely on artificial intelligence (AI) solutions to address complex challenges, using AI to accurately predict real estate prices becomes a multifaceted and crucial task integral to urban planning and economic development. This paper delves into this endeavor, highlighting the transformative impact of specifically chosen contextual open data and recent advances in eXplainable AI (XAI) to improve the accuracy and transparency of real estate price predictions within smart cities. Focusing on Lisbon’s dynamic housing market from 2018 to 2021, we integrate diverse open data sources into an eXtreme Gradient Boosting (XGBoost) machine learning model optimized with the Optuna hyperparameter framework to enhance its predictive precision. Our initial model achieved a Mean Absolute Error (MAE) of EUR 51,733.88, which was significantly reduced by 8.24% upon incorporating open data features. This substantial improvement underscores open data’s potential to boost real estate price predictions. Additionally, we employed SHapley Additive exPlanations (SHAP) to address the transparency of our model. This approach clarifies the influence of each predictor on price estimates and fosters enhanced accountability and trust in AI-driven real estate analytics. The findings of this study emphasize the role of XAI and the value of open data in enhancing the transparency and efficacy of AI-driven urban development, explicitly demonstrating how they contribute to more accurate and insightful real estate analytics, thereby informing and improving policy decisions for the sustainable development of smart cities.Information Management Research Center (MagIC) - NOVA Information Management SchoolNOVA Information Management School (NOVA IMS)RUNNeves, Fátima TrindadeAparicio, ManuelaNeto, Miguel de Castro2024-03-08T00:00:14Z2024-03-062024-03-06T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article41application/pdfhttp://hdl.handle.net/10362/164626eng2076-3417PURE: 84725919https://doi.org/10.3390/app14052209info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-18T01:44:26Zoai:run.unl.pt:10362/164626Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T04:00:17.463255Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
The Impacts of Open Data and eXplainable AI on Real Estate Price Predictions in Smart Cities |
title |
The Impacts of Open Data and eXplainable AI on Real Estate Price Predictions in Smart Cities |
spellingShingle |
The Impacts of Open Data and eXplainable AI on Real Estate Price Predictions in Smart Cities Neves, Fátima Trindade open data smart cities real estate predictions urban development artificial intelligence machine learning eXplainable AI XGBoost Optuna hapley additive explanations (SHAP) SDG 8 - Decent Work and Economic Growth SDG 11 - Sustainable Cities and Communities |
title_short |
The Impacts of Open Data and eXplainable AI on Real Estate Price Predictions in Smart Cities |
title_full |
The Impacts of Open Data and eXplainable AI on Real Estate Price Predictions in Smart Cities |
title_fullStr |
The Impacts of Open Data and eXplainable AI on Real Estate Price Predictions in Smart Cities |
title_full_unstemmed |
The Impacts of Open Data and eXplainable AI on Real Estate Price Predictions in Smart Cities |
title_sort |
The Impacts of Open Data and eXplainable AI on Real Estate Price Predictions in Smart Cities |
author |
Neves, Fátima Trindade |
author_facet |
Neves, Fátima Trindade Aparicio, Manuela Neto, Miguel de Castro |
author_role |
author |
author2 |
Aparicio, Manuela Neto, Miguel de Castro |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Information Management Research Center (MagIC) - NOVA Information Management School NOVA Information Management School (NOVA IMS) RUN |
dc.contributor.author.fl_str_mv |
Neves, Fátima Trindade Aparicio, Manuela Neto, Miguel de Castro |
dc.subject.por.fl_str_mv |
open data smart cities real estate predictions urban development artificial intelligence machine learning eXplainable AI XGBoost Optuna hapley additive explanations (SHAP) SDG 8 - Decent Work and Economic Growth SDG 11 - Sustainable Cities and Communities |
topic |
open data smart cities real estate predictions urban development artificial intelligence machine learning eXplainable AI XGBoost Optuna hapley additive explanations (SHAP) SDG 8 - Decent Work and Economic Growth SDG 11 - Sustainable Cities and Communities |
description |
Neves, F. T., Aparicio, M., & Neto, M. D. C. (2024). The Impacts of Open Data and eXplainable AI on Real Estate Price Predictions in Smart Cities. Applied Sciences, 14(5), 1-40. Article 2209. https://doi.org/10.3390/app14052209 --- This research was funded by FCT—Fundação para a Ciência e Tecnologia, I.P. (Portugal), under research grant UIDB/04152/2020—Centro de Investigação em Gestão de Informação (MagIC). The authors would like to express their gratitude to Confidencial Imobiliário for graciously providing the real estate transactions data that supported this work. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-03-08T00:00:14Z 2024-03-06 2024-03-06T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/164626 |
url |
http://hdl.handle.net/10362/164626 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2076-3417 PURE: 84725919 https://doi.org/10.3390/app14052209 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
41 application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138178526871552 |