Initial Electronic Spare Parts Stock and Consumption Forecasting
Autor(a) principal: | |
---|---|
Data de Publicação: | 2008 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://scielo.pt/scielo.php?script=sci_arttext&pid=S0874-51612008000100004 |
Resumo: | There is a consensus that conventional continuous demand distribution methods are not appropriate for forecasting replacement parts. However, many forecasting tools available in market still use them. This work presents an application of the Poisson distribution to forecast the needs of electronic spare parts. Using basic stock management notions and usual concepts of reliability, availability and the Poisson process, an alternative method is proposed for sizing the initial stock of replacement parts to be purchased along with a electronic equipment. The results from the application of the proposed method and its comparison to the SAGA method, which is based on time series and normal distribution, are presented. The analyses of results have shown that it is possible to reduce the forecast errors; hence the stock costs, and the number of stockouts, thus enhancing the operational availability. |
id |
RCAP_b4a91bd151f532d6c4eca5dcd88b7f19 |
---|---|
oai_identifier_str |
oai:scielo:S0874-51612008000100004 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Initial Electronic Spare Parts Stock and Consumption ForecastingReplacement partssparesforecaststock managementsupplytime seriesavailabilityreliabilityPoissonThere is a consensus that conventional continuous demand distribution methods are not appropriate for forecasting replacement parts. However, many forecasting tools available in market still use them. This work presents an application of the Poisson distribution to forecast the needs of electronic spare parts. Using basic stock management notions and usual concepts of reliability, availability and the Poisson process, an alternative method is proposed for sizing the initial stock of replacement parts to be purchased along with a electronic equipment. The results from the application of the proposed method and its comparison to the SAGA method, which is based on time series and normal distribution, are presented. The analyses of results have shown that it is possible to reduce the forecast errors; hence the stock costs, and the number of stockouts, thus enhancing the operational availability.APDIO - Associação Portuguesa de Investigação Operacional2008-06-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articletext/htmlhttp://scielo.pt/scielo.php?script=sci_arttext&pid=S0874-51612008000100004Investigação Operacional v.28 n.1 2008reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAPenghttp://scielo.pt/scielo.php?script=sci_arttext&pid=S0874-51612008000100004NEVES,GuilhermeDIALLO,MadiagneLUSTOSA,Leonardo Junqueirainfo:eu-repo/semantics/openAccess2024-02-06T17:14:09Zoai:scielo:S0874-51612008000100004Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T02:24:10.015093Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Initial Electronic Spare Parts Stock and Consumption Forecasting |
title |
Initial Electronic Spare Parts Stock and Consumption Forecasting |
spellingShingle |
Initial Electronic Spare Parts Stock and Consumption Forecasting NEVES,Guilherme Replacement parts spares forecast stock management supply time series availability reliability Poisson |
title_short |
Initial Electronic Spare Parts Stock and Consumption Forecasting |
title_full |
Initial Electronic Spare Parts Stock and Consumption Forecasting |
title_fullStr |
Initial Electronic Spare Parts Stock and Consumption Forecasting |
title_full_unstemmed |
Initial Electronic Spare Parts Stock and Consumption Forecasting |
title_sort |
Initial Electronic Spare Parts Stock and Consumption Forecasting |
author |
NEVES,Guilherme |
author_facet |
NEVES,Guilherme DIALLO,Madiagne LUSTOSA,Leonardo Junqueira |
author_role |
author |
author2 |
DIALLO,Madiagne LUSTOSA,Leonardo Junqueira |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
NEVES,Guilherme DIALLO,Madiagne LUSTOSA,Leonardo Junqueira |
dc.subject.por.fl_str_mv |
Replacement parts spares forecast stock management supply time series availability reliability Poisson |
topic |
Replacement parts spares forecast stock management supply time series availability reliability Poisson |
description |
There is a consensus that conventional continuous demand distribution methods are not appropriate for forecasting replacement parts. However, many forecasting tools available in market still use them. This work presents an application of the Poisson distribution to forecast the needs of electronic spare parts. Using basic stock management notions and usual concepts of reliability, availability and the Poisson process, an alternative method is proposed for sizing the initial stock of replacement parts to be purchased along with a electronic equipment. The results from the application of the proposed method and its comparison to the SAGA method, which is based on time series and normal distribution, are presented. The analyses of results have shown that it is possible to reduce the forecast errors; hence the stock costs, and the number of stockouts, thus enhancing the operational availability. |
publishDate |
2008 |
dc.date.none.fl_str_mv |
2008-06-01 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://scielo.pt/scielo.php?script=sci_arttext&pid=S0874-51612008000100004 |
url |
http://scielo.pt/scielo.php?script=sci_arttext&pid=S0874-51612008000100004 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
http://scielo.pt/scielo.php?script=sci_arttext&pid=S0874-51612008000100004 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
APDIO - Associação Portuguesa de Investigação Operacional |
publisher.none.fl_str_mv |
APDIO - Associação Portuguesa de Investigação Operacional |
dc.source.none.fl_str_mv |
Investigação Operacional v.28 n.1 2008 reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137319994785792 |