Comparative Analysis of Machine Learning Techniques for the Classification of Knee Abnormality
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , , |
Tipo de documento: | Livro |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | https://hdl.handle.net/10216/131820 |
Resumo: | Knee abnormality is a major problem in elderly people these days. It can be diagnosed by using Magnetic Resonance Imaging (MRI) or X-Ray imaging techniques. X-Ray is only used for primary evaluation, while MRI is an efficient way to diagnose knee abnormality, but it is very expensive. In this work, Surface EMG (sEMG) signals acquired from healthy and knee abnormal individuals during three different lower limb movements: Gait, Standing and Sitting, were used for classification. Hence, first Discrete Wavelet Transform (DWT) was used for denoising the input signals; then, eleven different time-domain features were extracted by using a 256 msec windowing with 25% of overlapping. After that, the features were normalized between 0 (zero) to 1 (one) and then selected by using the backward elimination method based on the p-value test. Five different machine learning classifiers: K-nearest neighbor, support vector machine, decision tree, random forest and extra tree, were studied for the classification step. Our result shows that the Extra Tree Classifier with ten cross-validations gave the highest accuracy (91%) in detecting knee abnormality from the sEMG signals under analysis. (c) 2020 IEEE. |
id |
RCAP_b4bd8f58fb6f618584e05dd675b50214 |
---|---|
oai_identifier_str |
oai:repositorio-aberto.up.pt:10216/131820 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Comparative Analysis of Machine Learning Techniques for the Classification of Knee AbnormalityCiências Tecnológicas, Ciências médicas e da saúdeTechnological sciences, Medical and Health sciencesKnee abnormality is a major problem in elderly people these days. It can be diagnosed by using Magnetic Resonance Imaging (MRI) or X-Ray imaging techniques. X-Ray is only used for primary evaluation, while MRI is an efficient way to diagnose knee abnormality, but it is very expensive. In this work, Surface EMG (sEMG) signals acquired from healthy and knee abnormal individuals during three different lower limb movements: Gait, Standing and Sitting, were used for classification. Hence, first Discrete Wavelet Transform (DWT) was used for denoising the input signals; then, eleven different time-domain features were extracted by using a 256 msec windowing with 25% of overlapping. After that, the features were normalized between 0 (zero) to 1 (one) and then selected by using the backward elimination method based on the p-value test. Five different machine learning classifiers: K-nearest neighbor, support vector machine, decision tree, random forest and extra tree, were studied for the classification step. Our result shows that the Extra Tree Classifier with ten cross-validations gave the highest accuracy (91%) in detecting knee abnormality from the sEMG signals under analysis. (c) 2020 IEEE.2020-102020-10-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bookapplication/pdfhttps://hdl.handle.net/10216/131820eng10.1109/ICCCA49541.2020.9250799Ankit VijayvargiyaRajesh KumarNilanjan DeyJoão Manuel R. S. Tavaresinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-29T14:01:43Zoai:repositorio-aberto.up.pt:10216/131820Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T23:52:52.295804Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Comparative Analysis of Machine Learning Techniques for the Classification of Knee Abnormality |
title |
Comparative Analysis of Machine Learning Techniques for the Classification of Knee Abnormality |
spellingShingle |
Comparative Analysis of Machine Learning Techniques for the Classification of Knee Abnormality Ankit Vijayvargiya Ciências Tecnológicas, Ciências médicas e da saúde Technological sciences, Medical and Health sciences |
title_short |
Comparative Analysis of Machine Learning Techniques for the Classification of Knee Abnormality |
title_full |
Comparative Analysis of Machine Learning Techniques for the Classification of Knee Abnormality |
title_fullStr |
Comparative Analysis of Machine Learning Techniques for the Classification of Knee Abnormality |
title_full_unstemmed |
Comparative Analysis of Machine Learning Techniques for the Classification of Knee Abnormality |
title_sort |
Comparative Analysis of Machine Learning Techniques for the Classification of Knee Abnormality |
author |
Ankit Vijayvargiya |
author_facet |
Ankit Vijayvargiya Rajesh Kumar Nilanjan Dey João Manuel R. S. Tavares |
author_role |
author |
author2 |
Rajesh Kumar Nilanjan Dey João Manuel R. S. Tavares |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Ankit Vijayvargiya Rajesh Kumar Nilanjan Dey João Manuel R. S. Tavares |
dc.subject.por.fl_str_mv |
Ciências Tecnológicas, Ciências médicas e da saúde Technological sciences, Medical and Health sciences |
topic |
Ciências Tecnológicas, Ciências médicas e da saúde Technological sciences, Medical and Health sciences |
description |
Knee abnormality is a major problem in elderly people these days. It can be diagnosed by using Magnetic Resonance Imaging (MRI) or X-Ray imaging techniques. X-Ray is only used for primary evaluation, while MRI is an efficient way to diagnose knee abnormality, but it is very expensive. In this work, Surface EMG (sEMG) signals acquired from healthy and knee abnormal individuals during three different lower limb movements: Gait, Standing and Sitting, were used for classification. Hence, first Discrete Wavelet Transform (DWT) was used for denoising the input signals; then, eleven different time-domain features were extracted by using a 256 msec windowing with 25% of overlapping. After that, the features were normalized between 0 (zero) to 1 (one) and then selected by using the backward elimination method based on the p-value test. Five different machine learning classifiers: K-nearest neighbor, support vector machine, decision tree, random forest and extra tree, were studied for the classification step. Our result shows that the Extra Tree Classifier with ten cross-validations gave the highest accuracy (91%) in detecting knee abnormality from the sEMG signals under analysis. (c) 2020 IEEE. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-10 2020-10-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/book |
format |
book |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/10216/131820 |
url |
https://hdl.handle.net/10216/131820 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1109/ICCCA49541.2020.9250799 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799135848837414912 |