Second-order finite volume with hydrostatic reconstruction for tsunami simulation
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/1822/45009 |
Resumo: | Tsunami modeling commonly accepts the shallow water system as governing equations where the major difficulty is the correct treatment of the nonconservative term due to bathymetry variations. The finite volume method for solving the shallow water equations with such source terms has received great attention in the two last decades. The built-in conservation property, the capacity to correctly treat discontinuities, and the ability to handle complex bathymetry configurations preserving some steady state configurations (well-balanced scheme) make the method very efficient. Nevertheless, it is still a challenge to build an efficient numerical scheme, with very few numerical artifacts (e.g., small numerical diffusion, correct propagation of the discontinuities, accuracy, and robustness), to be used in an operational environment, and that is able to better capture the dynamics of the wet-dry interface and the physical phenomena that occur in the inundation area. In the first part of this paper, we present a new second-order finite volume code. The code is developed for the shallow water equations with a nonconservative term based on the hydrostatic reconstruction technology to achieve a well-balanced scheme and an adequate dry/wet interface treatment. A detailed presentation of the numerical method is given. In the second part of the paper, we highlight the advantages of the new numerical technique. We benchmark the numerical code against analytical, experimental, and field results to assess the robustness and the accuracy of the numerical code. Finally, we use the 28 February 1969 North East Atlantic tsunami to check the performance of the code with real data. |
id |
RCAP_b4fba6059769af214a58c3539ea206db |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/45009 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Second-order finite volume with hydrostatic reconstruction for tsunami simulationSecond-order finite volume scheme with hydrostatic reconstructionNonconservative fluxtsunamiapplication to tsunamifinite volume schemehydrostatic reconstructionsecond-orderCiências Naturais::MatemáticasScience & TechnologyTsunami modeling commonly accepts the shallow water system as governing equations where the major difficulty is the correct treatment of the nonconservative term due to bathymetry variations. The finite volume method for solving the shallow water equations with such source terms has received great attention in the two last decades. The built-in conservation property, the capacity to correctly treat discontinuities, and the ability to handle complex bathymetry configurations preserving some steady state configurations (well-balanced scheme) make the method very efficient. Nevertheless, it is still a challenge to build an efficient numerical scheme, with very few numerical artifacts (e.g., small numerical diffusion, correct propagation of the discontinuities, accuracy, and robustness), to be used in an operational environment, and that is able to better capture the dynamics of the wet-dry interface and the physical phenomena that occur in the inundation area. In the first part of this paper, we present a new second-order finite volume code. The code is developed for the shallow water equations with a nonconservative term based on the hydrostatic reconstruction technology to achieve a well-balanced scheme and an adequate dry/wet interface treatment. A detailed presentation of the numerical method is given. In the second part of the paper, we highlight the advantages of the new numerical technique. We benchmark the numerical code against analytical, experimental, and field results to assess the robustness and the accuracy of the numerical code. Finally, we use the 28 February 1969 North East Atlantic tsunami to check the performance of the code with real data.Historical data for Cascais and Lagos (1969 Lisbon Tsunami) are available at http://www.dgterritorio.pt/cartografia_e_geodesia/geodesia/redes_geodesicas/rede_maregrafica/. The tagus estuary data (typewriter document) are available at the Dom Luiz Institute library http://idl.ul.pt/node/33. This work is funded by the Portugal-France research agreement, through the research project GEONUM FCT-ANR/MAT-NAN/0122/2012. This research was financed by Portuguese Funds through FCT-Fundacao para a Ciencia e a Tecnologia, within the Project UID/MAT/00013/2013.American Geophysical UnionUniversidade do MinhoClain, StéphaneReis, C.Costa, R.Figueiredo, Jorge ManuelBaptista, M. A.Miranda, J. M.2016-122016-12-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/45009engClain, S., Reis, C., Costa, R., Figueiredo, J., Baptista, M. A., & Miranda, J. M. (2016). Second-order finite volume with hydrostatic reconstruction for tsunami simulation. Journal of Advances in Modeling Earth Systems. doi: 10.1002/2015ms0006031942-24661942-246610.1002/2015MS000603http://agupubs.onlinelibrary.wiley.com/hub/journal/10.1002/(ISSN)1942-2466/info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T11:58:30Zoai:repositorium.sdum.uminho.pt:1822/45009Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T18:48:14.762490Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Second-order finite volume with hydrostatic reconstruction for tsunami simulation |
title |
Second-order finite volume with hydrostatic reconstruction for tsunami simulation |
spellingShingle |
Second-order finite volume with hydrostatic reconstruction for tsunami simulation Clain, Stéphane Second-order finite volume scheme with hydrostatic reconstruction Nonconservative flux tsunami application to tsunami finite volume scheme hydrostatic reconstruction second-order Ciências Naturais::Matemáticas Science & Technology |
title_short |
Second-order finite volume with hydrostatic reconstruction for tsunami simulation |
title_full |
Second-order finite volume with hydrostatic reconstruction for tsunami simulation |
title_fullStr |
Second-order finite volume with hydrostatic reconstruction for tsunami simulation |
title_full_unstemmed |
Second-order finite volume with hydrostatic reconstruction for tsunami simulation |
title_sort |
Second-order finite volume with hydrostatic reconstruction for tsunami simulation |
author |
Clain, Stéphane |
author_facet |
Clain, Stéphane Reis, C. Costa, R. Figueiredo, Jorge Manuel Baptista, M. A. Miranda, J. M. |
author_role |
author |
author2 |
Reis, C. Costa, R. Figueiredo, Jorge Manuel Baptista, M. A. Miranda, J. M. |
author2_role |
author author author author author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Clain, Stéphane Reis, C. Costa, R. Figueiredo, Jorge Manuel Baptista, M. A. Miranda, J. M. |
dc.subject.por.fl_str_mv |
Second-order finite volume scheme with hydrostatic reconstruction Nonconservative flux tsunami application to tsunami finite volume scheme hydrostatic reconstruction second-order Ciências Naturais::Matemáticas Science & Technology |
topic |
Second-order finite volume scheme with hydrostatic reconstruction Nonconservative flux tsunami application to tsunami finite volume scheme hydrostatic reconstruction second-order Ciências Naturais::Matemáticas Science & Technology |
description |
Tsunami modeling commonly accepts the shallow water system as governing equations where the major difficulty is the correct treatment of the nonconservative term due to bathymetry variations. The finite volume method for solving the shallow water equations with such source terms has received great attention in the two last decades. The built-in conservation property, the capacity to correctly treat discontinuities, and the ability to handle complex bathymetry configurations preserving some steady state configurations (well-balanced scheme) make the method very efficient. Nevertheless, it is still a challenge to build an efficient numerical scheme, with very few numerical artifacts (e.g., small numerical diffusion, correct propagation of the discontinuities, accuracy, and robustness), to be used in an operational environment, and that is able to better capture the dynamics of the wet-dry interface and the physical phenomena that occur in the inundation area. In the first part of this paper, we present a new second-order finite volume code. The code is developed for the shallow water equations with a nonconservative term based on the hydrostatic reconstruction technology to achieve a well-balanced scheme and an adequate dry/wet interface treatment. A detailed presentation of the numerical method is given. In the second part of the paper, we highlight the advantages of the new numerical technique. We benchmark the numerical code against analytical, experimental, and field results to assess the robustness and the accuracy of the numerical code. Finally, we use the 28 February 1969 North East Atlantic tsunami to check the performance of the code with real data. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-12 2016-12-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/1822/45009 |
url |
http://hdl.handle.net/1822/45009 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Clain, S., Reis, C., Costa, R., Figueiredo, J., Baptista, M. A., & Miranda, J. M. (2016). Second-order finite volume with hydrostatic reconstruction for tsunami simulation. Journal of Advances in Modeling Earth Systems. doi: 10.1002/2015ms000603 1942-2466 1942-2466 10.1002/2015MS000603 http://agupubs.onlinelibrary.wiley.com/hub/journal/10.1002/(ISSN)1942-2466/ |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
American Geophysical Union |
publisher.none.fl_str_mv |
American Geophysical Union |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799132243015237632 |