Optimal control with asymptotic stability constraints
Autor(a) principal: | |
---|---|
Data de Publicação: | 2006 |
Outros Autores: | |
Tipo de documento: | Livro |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | https://hdl.handle.net/10216/71620 |
Resumo: | : In this article, we address the infinite horizon problem of optimizing a given performance criterion by choosing control strategies whose trajectories are asymptotically stable. In a first stage, we state and discuss suf- ficient conditions of optimality conditions in the form of an Hamilton-Jacobi-Bellman equation, and, based on them. Then, we present necessary conditions of optimality in the form of a maximum principle and show how it can be derived from an auxiliary optimal control problem with mixed constraints. |
id |
RCAP_b5109ed24069279a8eea8089f56ca838 |
---|---|
oai_identifier_str |
oai:repositorio-aberto.up.pt:10216/71620 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Optimal control with asymptotic stability constraintsEngenharia electrotécnica, electrónica e informáticaElectrical engineering, Electronic engineering, Information engineering: In this article, we address the infinite horizon problem of optimizing a given performance criterion by choosing control strategies whose trajectories are asymptotically stable. In a first stage, we state and discuss suf- ficient conditions of optimality conditions in the form of an Hamilton-Jacobi-Bellman equation, and, based on them. Then, we present necessary conditions of optimality in the form of a maximum principle and show how it can be derived from an auxiliary optimal control problem with mixed constraints.20062006-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bookapplication/pdfhttps://hdl.handle.net/10216/71620engFernando Lobo PereiraGeraldo Nunes Silvainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-29T13:49:41Zoai:repositorio-aberto.up.pt:10216/71620Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T23:48:43.957362Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Optimal control with asymptotic stability constraints |
title |
Optimal control with asymptotic stability constraints |
spellingShingle |
Optimal control with asymptotic stability constraints Fernando Lobo Pereira Engenharia electrotécnica, electrónica e informática Electrical engineering, Electronic engineering, Information engineering |
title_short |
Optimal control with asymptotic stability constraints |
title_full |
Optimal control with asymptotic stability constraints |
title_fullStr |
Optimal control with asymptotic stability constraints |
title_full_unstemmed |
Optimal control with asymptotic stability constraints |
title_sort |
Optimal control with asymptotic stability constraints |
author |
Fernando Lobo Pereira |
author_facet |
Fernando Lobo Pereira Geraldo Nunes Silva |
author_role |
author |
author2 |
Geraldo Nunes Silva |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Fernando Lobo Pereira Geraldo Nunes Silva |
dc.subject.por.fl_str_mv |
Engenharia electrotécnica, electrónica e informática Electrical engineering, Electronic engineering, Information engineering |
topic |
Engenharia electrotécnica, electrónica e informática Electrical engineering, Electronic engineering, Information engineering |
description |
: In this article, we address the infinite horizon problem of optimizing a given performance criterion by choosing control strategies whose trajectories are asymptotically stable. In a first stage, we state and discuss suf- ficient conditions of optimality conditions in the form of an Hamilton-Jacobi-Bellman equation, and, based on them. Then, we present necessary conditions of optimality in the form of a maximum principle and show how it can be derived from an auxiliary optimal control problem with mixed constraints. |
publishDate |
2006 |
dc.date.none.fl_str_mv |
2006 2006-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/book |
format |
book |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/10216/71620 |
url |
https://hdl.handle.net/10216/71620 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799135806215946240 |