Optimal control with asymptotic stability constraints

Detalhes bibliográficos
Autor(a) principal: Fernando Lobo Pereira
Data de Publicação: 2006
Outros Autores: Geraldo Nunes Silva
Tipo de documento: Livro
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: https://hdl.handle.net/10216/71620
Resumo: : In this article, we address the infinite horizon problem of optimizing a given performance criterion by choosing control strategies whose trajectories are asymptotically stable. In a first stage, we state and discuss suf- ficient conditions of optimality conditions in the form of an Hamilton-Jacobi-Bellman equation, and, based on them. Then, we present necessary conditions of optimality in the form of a maximum principle and show how it can be derived from an auxiliary optimal control problem with mixed constraints.
id RCAP_b5109ed24069279a8eea8089f56ca838
oai_identifier_str oai:repositorio-aberto.up.pt:10216/71620
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Optimal control with asymptotic stability constraintsEngenharia electrotécnica, electrónica e informáticaElectrical engineering, Electronic engineering, Information engineering: In this article, we address the infinite horizon problem of optimizing a given performance criterion by choosing control strategies whose trajectories are asymptotically stable. In a first stage, we state and discuss suf- ficient conditions of optimality conditions in the form of an Hamilton-Jacobi-Bellman equation, and, based on them. Then, we present necessary conditions of optimality in the form of a maximum principle and show how it can be derived from an auxiliary optimal control problem with mixed constraints.20062006-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bookapplication/pdfhttps://hdl.handle.net/10216/71620engFernando Lobo PereiraGeraldo Nunes Silvainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-29T13:49:41Zoai:repositorio-aberto.up.pt:10216/71620Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T23:48:43.957362Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Optimal control with asymptotic stability constraints
title Optimal control with asymptotic stability constraints
spellingShingle Optimal control with asymptotic stability constraints
Fernando Lobo Pereira
Engenharia electrotécnica, electrónica e informática
Electrical engineering, Electronic engineering, Information engineering
title_short Optimal control with asymptotic stability constraints
title_full Optimal control with asymptotic stability constraints
title_fullStr Optimal control with asymptotic stability constraints
title_full_unstemmed Optimal control with asymptotic stability constraints
title_sort Optimal control with asymptotic stability constraints
author Fernando Lobo Pereira
author_facet Fernando Lobo Pereira
Geraldo Nunes Silva
author_role author
author2 Geraldo Nunes Silva
author2_role author
dc.contributor.author.fl_str_mv Fernando Lobo Pereira
Geraldo Nunes Silva
dc.subject.por.fl_str_mv Engenharia electrotécnica, electrónica e informática
Electrical engineering, Electronic engineering, Information engineering
topic Engenharia electrotécnica, electrónica e informática
Electrical engineering, Electronic engineering, Information engineering
description : In this article, we address the infinite horizon problem of optimizing a given performance criterion by choosing control strategies whose trajectories are asymptotically stable. In a first stage, we state and discuss suf- ficient conditions of optimality conditions in the form of an Hamilton-Jacobi-Bellman equation, and, based on them. Then, we present necessary conditions of optimality in the form of a maximum principle and show how it can be derived from an auxiliary optimal control problem with mixed constraints.
publishDate 2006
dc.date.none.fl_str_mv 2006
2006-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/book
format book
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/10216/71620
url https://hdl.handle.net/10216/71620
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799135806215946240