A remote sensing-based approach to estimating montado canopy density using the FCD model: a contribution to identifying HNV farmlands in southern Portugal
Autor(a) principal: | |
---|---|
Data de Publicação: | 2014 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10174/13124 https://doi.org/10.1007/s10457-014-9769-3 |
Resumo: | Mapping the land-cover pattern dominated by complex Mediterranean silvo-pastoral systems with an accuracy that enables precise monitoring of changing tree-cover density is still an open challenge. The main goal of this paper is to demonstrate the implementation and effectiveness of the Forest Canopy Density (FCD) model in producing a remote sensing-based and detailed map of montado canopy density over a large territory in southern Portugal. This map will make a fundamental contribution to accurately identifying and assessing High Nature Value farmland in montado areas. The results reveal that the FCD model is an effective approach to estimating the density classes of montado canopy (overall accuracy=78.0 %, kappa value=0.71). The study also shows that the FCD approach generated good user’s and producer’s accuracies for the three montado canopy-density classes. Globally, the results obtained show that biophysical indices such as the advanced vegetation index, the bare soil index, the shadow index and the thermal index are suitable for estimating and mapping montado canopy-density classes. These results constitute the first remote sensing-based product for mapping montado canopy density that has been developed using the FCD model. This research clearly demonstrates that this approach can be used in the context of Mediterranean agro-forestry systems. |
id |
RCAP_b55937f356f5440c7eccf5075c09baa0 |
---|---|
oai_identifier_str |
oai:dspace.uevora.pt:10174/13124 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
A remote sensing-based approach to estimating montado canopy density using the FCD model: a contribution to identifying HNV farmlands in southern PortugalCanopy densityFCDAgroforestryMontadoDehesaAdvanced vegetation indexMapping the land-cover pattern dominated by complex Mediterranean silvo-pastoral systems with an accuracy that enables precise monitoring of changing tree-cover density is still an open challenge. The main goal of this paper is to demonstrate the implementation and effectiveness of the Forest Canopy Density (FCD) model in producing a remote sensing-based and detailed map of montado canopy density over a large territory in southern Portugal. This map will make a fundamental contribution to accurately identifying and assessing High Nature Value farmland in montado areas. The results reveal that the FCD model is an effective approach to estimating the density classes of montado canopy (overall accuracy=78.0 %, kappa value=0.71). The study also shows that the FCD approach generated good user’s and producer’s accuracies for the three montado canopy-density classes. Globally, the results obtained show that biophysical indices such as the advanced vegetation index, the bare soil index, the shadow index and the thermal index are suitable for estimating and mapping montado canopy-density classes. These results constitute the first remote sensing-based product for mapping montado canopy density that has been developed using the FCD model. This research clearly demonstrates that this approach can be used in the context of Mediterranean agro-forestry systems.Agroforest Syst2015-03-02T16:33:07Z2015-03-022014-11-19T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10174/13124http://hdl.handle.net/10174/13124https://doi.org/10.1007/s10457-014-9769-3porGodinho, S., Gil, A., Guiomar, N., Neves, N., Pinto-Correia, T., 2014. A remote sensing-based approach to estimating montado canopy density using the FCD model: a contribution to identifying HNV farmlands in southern Portugal. Agroforest Syst. DOI 10.1007/s10457-014-9769-3PAO - Publicações - Artigos em Revistas Internacionais Com Arbitragem Científicagodinho.sergio@gmail.comarturgil@uac.ptnunogui@uevora.ptnneves@uevora.ptmtpc@uevora.ptGodinho, SérgioGil, ArturGuiomar, NunoNeves, NunoPinto-Correia, Teresainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-01-03T18:56:02Zoai:dspace.uevora.pt:10174/13124Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T01:05:34.608101Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
A remote sensing-based approach to estimating montado canopy density using the FCD model: a contribution to identifying HNV farmlands in southern Portugal |
title |
A remote sensing-based approach to estimating montado canopy density using the FCD model: a contribution to identifying HNV farmlands in southern Portugal |
spellingShingle |
A remote sensing-based approach to estimating montado canopy density using the FCD model: a contribution to identifying HNV farmlands in southern Portugal Godinho, Sérgio Canopy density FCD Agroforestry Montado Dehesa Advanced vegetation index |
title_short |
A remote sensing-based approach to estimating montado canopy density using the FCD model: a contribution to identifying HNV farmlands in southern Portugal |
title_full |
A remote sensing-based approach to estimating montado canopy density using the FCD model: a contribution to identifying HNV farmlands in southern Portugal |
title_fullStr |
A remote sensing-based approach to estimating montado canopy density using the FCD model: a contribution to identifying HNV farmlands in southern Portugal |
title_full_unstemmed |
A remote sensing-based approach to estimating montado canopy density using the FCD model: a contribution to identifying HNV farmlands in southern Portugal |
title_sort |
A remote sensing-based approach to estimating montado canopy density using the FCD model: a contribution to identifying HNV farmlands in southern Portugal |
author |
Godinho, Sérgio |
author_facet |
Godinho, Sérgio Gil, Artur Guiomar, Nuno Neves, Nuno Pinto-Correia, Teresa |
author_role |
author |
author2 |
Gil, Artur Guiomar, Nuno Neves, Nuno Pinto-Correia, Teresa |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Godinho, Sérgio Gil, Artur Guiomar, Nuno Neves, Nuno Pinto-Correia, Teresa |
dc.subject.por.fl_str_mv |
Canopy density FCD Agroforestry Montado Dehesa Advanced vegetation index |
topic |
Canopy density FCD Agroforestry Montado Dehesa Advanced vegetation index |
description |
Mapping the land-cover pattern dominated by complex Mediterranean silvo-pastoral systems with an accuracy that enables precise monitoring of changing tree-cover density is still an open challenge. The main goal of this paper is to demonstrate the implementation and effectiveness of the Forest Canopy Density (FCD) model in producing a remote sensing-based and detailed map of montado canopy density over a large territory in southern Portugal. This map will make a fundamental contribution to accurately identifying and assessing High Nature Value farmland in montado areas. The results reveal that the FCD model is an effective approach to estimating the density classes of montado canopy (overall accuracy=78.0 %, kappa value=0.71). The study also shows that the FCD approach generated good user’s and producer’s accuracies for the three montado canopy-density classes. Globally, the results obtained show that biophysical indices such as the advanced vegetation index, the bare soil index, the shadow index and the thermal index are suitable for estimating and mapping montado canopy-density classes. These results constitute the first remote sensing-based product for mapping montado canopy density that has been developed using the FCD model. This research clearly demonstrates that this approach can be used in the context of Mediterranean agro-forestry systems. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-11-19T00:00:00Z 2015-03-02T16:33:07Z 2015-03-02 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10174/13124 http://hdl.handle.net/10174/13124 https://doi.org/10.1007/s10457-014-9769-3 |
url |
http://hdl.handle.net/10174/13124 https://doi.org/10.1007/s10457-014-9769-3 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
Godinho, S., Gil, A., Guiomar, N., Neves, N., Pinto-Correia, T., 2014. A remote sensing-based approach to estimating montado canopy density using the FCD model: a contribution to identifying HNV farmlands in southern Portugal. Agroforest Syst. DOI 10.1007/s10457-014-9769-3 PAO - Publicações - Artigos em Revistas Internacionais Com Arbitragem Científica godinho.sergio@gmail.com arturgil@uac.pt nunogui@uevora.pt nneves@uevora.pt mtpc@uevora.pt |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Agroforest Syst |
publisher.none.fl_str_mv |
Agroforest Syst |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799136540792717312 |