A remote sensing-based approach to estimating montado canopy density using the FCD model: a contribution to identifying HNV farmlands in southern Portugal

Detalhes bibliográficos
Autor(a) principal: Godinho, Sérgio
Data de Publicação: 2014
Outros Autores: Gil, Artur, Guiomar, Nuno, Neves, Nuno, Pinto-Correia, Teresa
Tipo de documento: Artigo
Idioma: por
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10174/13124
https://doi.org/10.1007/s10457-014-9769-3
Resumo: Mapping the land-cover pattern dominated by complex Mediterranean silvo-pastoral systems with an accuracy that enables precise monitoring of changing tree-cover density is still an open challenge. The main goal of this paper is to demonstrate the implementation and effectiveness of the Forest Canopy Density (FCD) model in producing a remote sensing-based and detailed map of montado canopy density over a large territory in southern Portugal. This map will make a fundamental contribution to accurately identifying and assessing High Nature Value farmland in montado areas. The results reveal that the FCD model is an effective approach to estimating the density classes of montado canopy (overall accuracy=78.0 %, kappa value=0.71). The study also shows that the FCD approach generated good user’s and producer’s accuracies for the three montado canopy-density classes. Globally, the results obtained show that biophysical indices such as the advanced vegetation index, the bare soil index, the shadow index and the thermal index are suitable for estimating and mapping montado canopy-density classes. These results constitute the first remote sensing-based product for mapping montado canopy density that has been developed using the FCD model. This research clearly demonstrates that this approach can be used in the context of Mediterranean agro-forestry systems.
id RCAP_b55937f356f5440c7eccf5075c09baa0
oai_identifier_str oai:dspace.uevora.pt:10174/13124
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling A remote sensing-based approach to estimating montado canopy density using the FCD model: a contribution to identifying HNV farmlands in southern PortugalCanopy densityFCDAgroforestryMontadoDehesaAdvanced vegetation indexMapping the land-cover pattern dominated by complex Mediterranean silvo-pastoral systems with an accuracy that enables precise monitoring of changing tree-cover density is still an open challenge. The main goal of this paper is to demonstrate the implementation and effectiveness of the Forest Canopy Density (FCD) model in producing a remote sensing-based and detailed map of montado canopy density over a large territory in southern Portugal. This map will make a fundamental contribution to accurately identifying and assessing High Nature Value farmland in montado areas. The results reveal that the FCD model is an effective approach to estimating the density classes of montado canopy (overall accuracy=78.0 %, kappa value=0.71). The study also shows that the FCD approach generated good user’s and producer’s accuracies for the three montado canopy-density classes. Globally, the results obtained show that biophysical indices such as the advanced vegetation index, the bare soil index, the shadow index and the thermal index are suitable for estimating and mapping montado canopy-density classes. These results constitute the first remote sensing-based product for mapping montado canopy density that has been developed using the FCD model. This research clearly demonstrates that this approach can be used in the context of Mediterranean agro-forestry systems.Agroforest Syst2015-03-02T16:33:07Z2015-03-022014-11-19T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10174/13124http://hdl.handle.net/10174/13124https://doi.org/10.1007/s10457-014-9769-3porGodinho, S., Gil, A., Guiomar, N., Neves, N., Pinto-Correia, T., 2014. A remote sensing-based approach to estimating montado canopy density using the FCD model: a contribution to identifying HNV farmlands in southern Portugal. Agroforest Syst. DOI 10.1007/s10457-014-9769-3PAO - Publicações - Artigos em Revistas Internacionais Com Arbitragem Científicagodinho.sergio@gmail.comarturgil@uac.ptnunogui@uevora.ptnneves@uevora.ptmtpc@uevora.ptGodinho, SérgioGil, ArturGuiomar, NunoNeves, NunoPinto-Correia, Teresainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-01-03T18:56:02Zoai:dspace.uevora.pt:10174/13124Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T01:05:34.608101Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv A remote sensing-based approach to estimating montado canopy density using the FCD model: a contribution to identifying HNV farmlands in southern Portugal
title A remote sensing-based approach to estimating montado canopy density using the FCD model: a contribution to identifying HNV farmlands in southern Portugal
spellingShingle A remote sensing-based approach to estimating montado canopy density using the FCD model: a contribution to identifying HNV farmlands in southern Portugal
Godinho, Sérgio
Canopy density
FCD
Agroforestry
Montado
Dehesa
Advanced vegetation index
title_short A remote sensing-based approach to estimating montado canopy density using the FCD model: a contribution to identifying HNV farmlands in southern Portugal
title_full A remote sensing-based approach to estimating montado canopy density using the FCD model: a contribution to identifying HNV farmlands in southern Portugal
title_fullStr A remote sensing-based approach to estimating montado canopy density using the FCD model: a contribution to identifying HNV farmlands in southern Portugal
title_full_unstemmed A remote sensing-based approach to estimating montado canopy density using the FCD model: a contribution to identifying HNV farmlands in southern Portugal
title_sort A remote sensing-based approach to estimating montado canopy density using the FCD model: a contribution to identifying HNV farmlands in southern Portugal
author Godinho, Sérgio
author_facet Godinho, Sérgio
Gil, Artur
Guiomar, Nuno
Neves, Nuno
Pinto-Correia, Teresa
author_role author
author2 Gil, Artur
Guiomar, Nuno
Neves, Nuno
Pinto-Correia, Teresa
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Godinho, Sérgio
Gil, Artur
Guiomar, Nuno
Neves, Nuno
Pinto-Correia, Teresa
dc.subject.por.fl_str_mv Canopy density
FCD
Agroforestry
Montado
Dehesa
Advanced vegetation index
topic Canopy density
FCD
Agroforestry
Montado
Dehesa
Advanced vegetation index
description Mapping the land-cover pattern dominated by complex Mediterranean silvo-pastoral systems with an accuracy that enables precise monitoring of changing tree-cover density is still an open challenge. The main goal of this paper is to demonstrate the implementation and effectiveness of the Forest Canopy Density (FCD) model in producing a remote sensing-based and detailed map of montado canopy density over a large territory in southern Portugal. This map will make a fundamental contribution to accurately identifying and assessing High Nature Value farmland in montado areas. The results reveal that the FCD model is an effective approach to estimating the density classes of montado canopy (overall accuracy=78.0 %, kappa value=0.71). The study also shows that the FCD approach generated good user’s and producer’s accuracies for the three montado canopy-density classes. Globally, the results obtained show that biophysical indices such as the advanced vegetation index, the bare soil index, the shadow index and the thermal index are suitable for estimating and mapping montado canopy-density classes. These results constitute the first remote sensing-based product for mapping montado canopy density that has been developed using the FCD model. This research clearly demonstrates that this approach can be used in the context of Mediterranean agro-forestry systems.
publishDate 2014
dc.date.none.fl_str_mv 2014-11-19T00:00:00Z
2015-03-02T16:33:07Z
2015-03-02
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10174/13124
http://hdl.handle.net/10174/13124
https://doi.org/10.1007/s10457-014-9769-3
url http://hdl.handle.net/10174/13124
https://doi.org/10.1007/s10457-014-9769-3
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv Godinho, S., Gil, A., Guiomar, N., Neves, N., Pinto-Correia, T., 2014. A remote sensing-based approach to estimating montado canopy density using the FCD model: a contribution to identifying HNV farmlands in southern Portugal. Agroforest Syst. DOI 10.1007/s10457-014-9769-3
PAO - Publicações - Artigos em Revistas Internacionais Com Arbitragem Científica
godinho.sergio@gmail.com
arturgil@uac.pt
nunogui@uevora.pt
nneves@uevora.pt
mtpc@uevora.pt
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Agroforest Syst
publisher.none.fl_str_mv Agroforest Syst
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799136540792717312