Bidding Decision of Wind-Thermal GenCo in Day-Ahead Market
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10174/19674 https://doi.org/http://dx.doi.org/10.1016/j.egypro.2016.12.107 https://doi.org/10.1016/j.egypro.2016.12.107 |
Resumo: | This paper deals with the self-scheduling problem of a price-taker having wind and thermal power production and assisted by a cyber-physical system for supporting management decisions in a day-ahead electric energy market. The self-scheduling is regarded as a stochastic mixed-integer linear programming problem. Uncertainties on electricity price and wind power are considered through a set of scenarios. Thermal units are modelled by start-up and variable costs, furthermore constraints are considered, such as: ramp up/down and minimum up/down time limits. The stochastic mixed-integer linear programming problem allows a decision support for strategies advantaging from an effective wind and thermal mixed bidding. A case study is presented using data from the Iberian electricity market. |
id |
RCAP_b59398437b3ad60fbd2bbd33f357944b |
---|---|
oai_identifier_str |
oai:dspace.uevora.pt:10174/19674 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Bidding Decision of Wind-Thermal GenCo in Day-Ahead MarketBidding strategystochastic programmingmixed integer linear programmingwind thermal coordinationThis paper deals with the self-scheduling problem of a price-taker having wind and thermal power production and assisted by a cyber-physical system for supporting management decisions in a day-ahead electric energy market. The self-scheduling is regarded as a stochastic mixed-integer linear programming problem. Uncertainties on electricity price and wind power are considered through a set of scenarios. Thermal units are modelled by start-up and variable costs, furthermore constraints are considered, such as: ramp up/down and minimum up/down time limits. The stochastic mixed-integer linear programming problem allows a decision support for strategies advantaging from an effective wind and thermal mixed bidding. A case study is presented using data from the Iberian electricity market.2017-01-10T15:11:11Z2017-01-102016-12-26T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10174/19674https://doi.org/http://dx.doi.org/10.1016/j.egypro.2016.12.107http://hdl.handle.net/10174/19674https://doi.org/10.1016/j.egypro.2016.12.107enghttp://www.sciencedirect.com/science/article/pii/S1876610216316654ndndruimelicio@gmail.comnd483Laia, RuiPousinho, HugoMelício, RuiMendes, Victorinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-01-03T19:08:45Zoai:dspace.uevora.pt:10174/19674Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T01:11:12.620301Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Bidding Decision of Wind-Thermal GenCo in Day-Ahead Market |
title |
Bidding Decision of Wind-Thermal GenCo in Day-Ahead Market |
spellingShingle |
Bidding Decision of Wind-Thermal GenCo in Day-Ahead Market Laia, Rui Bidding strategy stochastic programming mixed integer linear programming wind thermal coordination |
title_short |
Bidding Decision of Wind-Thermal GenCo in Day-Ahead Market |
title_full |
Bidding Decision of Wind-Thermal GenCo in Day-Ahead Market |
title_fullStr |
Bidding Decision of Wind-Thermal GenCo in Day-Ahead Market |
title_full_unstemmed |
Bidding Decision of Wind-Thermal GenCo in Day-Ahead Market |
title_sort |
Bidding Decision of Wind-Thermal GenCo in Day-Ahead Market |
author |
Laia, Rui |
author_facet |
Laia, Rui Pousinho, Hugo Melício, Rui Mendes, Victor |
author_role |
author |
author2 |
Pousinho, Hugo Melício, Rui Mendes, Victor |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Laia, Rui Pousinho, Hugo Melício, Rui Mendes, Victor |
dc.subject.por.fl_str_mv |
Bidding strategy stochastic programming mixed integer linear programming wind thermal coordination |
topic |
Bidding strategy stochastic programming mixed integer linear programming wind thermal coordination |
description |
This paper deals with the self-scheduling problem of a price-taker having wind and thermal power production and assisted by a cyber-physical system for supporting management decisions in a day-ahead electric energy market. The self-scheduling is regarded as a stochastic mixed-integer linear programming problem. Uncertainties on electricity price and wind power are considered through a set of scenarios. Thermal units are modelled by start-up and variable costs, furthermore constraints are considered, such as: ramp up/down and minimum up/down time limits. The stochastic mixed-integer linear programming problem allows a decision support for strategies advantaging from an effective wind and thermal mixed bidding. A case study is presented using data from the Iberian electricity market. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-12-26T00:00:00Z 2017-01-10T15:11:11Z 2017-01-10 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10174/19674 https://doi.org/http://dx.doi.org/10.1016/j.egypro.2016.12.107 http://hdl.handle.net/10174/19674 https://doi.org/10.1016/j.egypro.2016.12.107 |
url |
http://hdl.handle.net/10174/19674 https://doi.org/http://dx.doi.org/10.1016/j.egypro.2016.12.107 https://doi.org/10.1016/j.egypro.2016.12.107 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
http://www.sciencedirect.com/science/article/pii/S1876610216316654 nd nd ruimelicio@gmail.com nd 483 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799136593492049920 |