Bidding Decision of Wind-Thermal GenCo in Day-Ahead Market

Detalhes bibliográficos
Autor(a) principal: Laia, Rui
Data de Publicação: 2016
Outros Autores: Pousinho, Hugo, Melício, Rui, Mendes, Victor
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10174/19674
https://doi.org/http://dx.doi.org/10.1016/j.egypro.2016.12.107
https://doi.org/10.1016/j.egypro.2016.12.107
Resumo: This paper deals with the self-scheduling problem of a price-taker having wind and thermal power production and assisted by a cyber-physical system for supporting management decisions in a day-ahead electric energy market. The self-scheduling is regarded as a stochastic mixed-integer linear programming problem. Uncertainties on electricity price and wind power are considered through a set of scenarios. Thermal units are modelled by start-up and variable costs, furthermore constraints are considered, such as: ramp up/down and minimum up/down time limits. The stochastic mixed-integer linear programming problem allows a decision support for strategies advantaging from an effective wind and thermal mixed bidding. A case study is presented using data from the Iberian electricity market.
id RCAP_b59398437b3ad60fbd2bbd33f357944b
oai_identifier_str oai:dspace.uevora.pt:10174/19674
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Bidding Decision of Wind-Thermal GenCo in Day-Ahead MarketBidding strategystochastic programmingmixed integer linear programmingwind thermal coordinationThis paper deals with the self-scheduling problem of a price-taker having wind and thermal power production and assisted by a cyber-physical system for supporting management decisions in a day-ahead electric energy market. The self-scheduling is regarded as a stochastic mixed-integer linear programming problem. Uncertainties on electricity price and wind power are considered through a set of scenarios. Thermal units are modelled by start-up and variable costs, furthermore constraints are considered, such as: ramp up/down and minimum up/down time limits. The stochastic mixed-integer linear programming problem allows a decision support for strategies advantaging from an effective wind and thermal mixed bidding. A case study is presented using data from the Iberian electricity market.2017-01-10T15:11:11Z2017-01-102016-12-26T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10174/19674https://doi.org/http://dx.doi.org/10.1016/j.egypro.2016.12.107http://hdl.handle.net/10174/19674https://doi.org/10.1016/j.egypro.2016.12.107enghttp://www.sciencedirect.com/science/article/pii/S1876610216316654ndndruimelicio@gmail.comnd483Laia, RuiPousinho, HugoMelício, RuiMendes, Victorinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-01-03T19:08:45Zoai:dspace.uevora.pt:10174/19674Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T01:11:12.620301Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Bidding Decision of Wind-Thermal GenCo in Day-Ahead Market
title Bidding Decision of Wind-Thermal GenCo in Day-Ahead Market
spellingShingle Bidding Decision of Wind-Thermal GenCo in Day-Ahead Market
Laia, Rui
Bidding strategy
stochastic programming
mixed integer linear programming
wind thermal coordination
title_short Bidding Decision of Wind-Thermal GenCo in Day-Ahead Market
title_full Bidding Decision of Wind-Thermal GenCo in Day-Ahead Market
title_fullStr Bidding Decision of Wind-Thermal GenCo in Day-Ahead Market
title_full_unstemmed Bidding Decision of Wind-Thermal GenCo in Day-Ahead Market
title_sort Bidding Decision of Wind-Thermal GenCo in Day-Ahead Market
author Laia, Rui
author_facet Laia, Rui
Pousinho, Hugo
Melício, Rui
Mendes, Victor
author_role author
author2 Pousinho, Hugo
Melício, Rui
Mendes, Victor
author2_role author
author
author
dc.contributor.author.fl_str_mv Laia, Rui
Pousinho, Hugo
Melício, Rui
Mendes, Victor
dc.subject.por.fl_str_mv Bidding strategy
stochastic programming
mixed integer linear programming
wind thermal coordination
topic Bidding strategy
stochastic programming
mixed integer linear programming
wind thermal coordination
description This paper deals with the self-scheduling problem of a price-taker having wind and thermal power production and assisted by a cyber-physical system for supporting management decisions in a day-ahead electric energy market. The self-scheduling is regarded as a stochastic mixed-integer linear programming problem. Uncertainties on electricity price and wind power are considered through a set of scenarios. Thermal units are modelled by start-up and variable costs, furthermore constraints are considered, such as: ramp up/down and minimum up/down time limits. The stochastic mixed-integer linear programming problem allows a decision support for strategies advantaging from an effective wind and thermal mixed bidding. A case study is presented using data from the Iberian electricity market.
publishDate 2016
dc.date.none.fl_str_mv 2016-12-26T00:00:00Z
2017-01-10T15:11:11Z
2017-01-10
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10174/19674
https://doi.org/http://dx.doi.org/10.1016/j.egypro.2016.12.107
http://hdl.handle.net/10174/19674
https://doi.org/10.1016/j.egypro.2016.12.107
url http://hdl.handle.net/10174/19674
https://doi.org/http://dx.doi.org/10.1016/j.egypro.2016.12.107
https://doi.org/10.1016/j.egypro.2016.12.107
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv http://www.sciencedirect.com/science/article/pii/S1876610216316654
nd
nd
ruimelicio@gmail.com
nd
483
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799136593492049920