Toeplitz minors and specializations of skew Schur polynomials
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10071/20917 |
Resumo: | We express minors of Toeplitz matrices of finite and large dimension in terms of symmetric functions. Comparing the resulting expressions with the inverses of some Toeplitz matrices, we obtain explicit formulas for a Selberg-Morris integral and for specializations of certain skew Schur polynomials. |
id |
RCAP_b59f97968d23503766ec44f8ef671d05 |
---|---|
oai_identifier_str |
oai:repositorio.iscte-iul.pt:10071/20917 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Toeplitz minors and specializations of skew Schur polynomialsToeplitz minorSkew Schur polynomialFisher-Hartwig singularityToeplitz inverseWe express minors of Toeplitz matrices of finite and large dimension in terms of symmetric functions. Comparing the resulting expressions with the inverses of some Toeplitz matrices, we obtain explicit formulas for a Selberg-Morris integral and for specializations of certain skew Schur polynomials.Academic Press2022-01-05T00:00:00Z2020-01-01T00:00:00Z20202020-12-14T14:37:57Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10071/20917eng0097-316510.1016/j.jcta.2019.105201García-García, D.Tierz, M.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-07-07T02:52:43Zoai:repositorio.iscte-iul.pt:10071/20917Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-07-07T02:52:43Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Toeplitz minors and specializations of skew Schur polynomials |
title |
Toeplitz minors and specializations of skew Schur polynomials |
spellingShingle |
Toeplitz minors and specializations of skew Schur polynomials García-García, D. Toeplitz minor Skew Schur polynomial Fisher-Hartwig singularity Toeplitz inverse |
title_short |
Toeplitz minors and specializations of skew Schur polynomials |
title_full |
Toeplitz minors and specializations of skew Schur polynomials |
title_fullStr |
Toeplitz minors and specializations of skew Schur polynomials |
title_full_unstemmed |
Toeplitz minors and specializations of skew Schur polynomials |
title_sort |
Toeplitz minors and specializations of skew Schur polynomials |
author |
García-García, D. |
author_facet |
García-García, D. Tierz, M. |
author_role |
author |
author2 |
Tierz, M. |
author2_role |
author |
dc.contributor.author.fl_str_mv |
García-García, D. Tierz, M. |
dc.subject.por.fl_str_mv |
Toeplitz minor Skew Schur polynomial Fisher-Hartwig singularity Toeplitz inverse |
topic |
Toeplitz minor Skew Schur polynomial Fisher-Hartwig singularity Toeplitz inverse |
description |
We express minors of Toeplitz matrices of finite and large dimension in terms of symmetric functions. Comparing the resulting expressions with the inverses of some Toeplitz matrices, we obtain explicit formulas for a Selberg-Morris integral and for specializations of certain skew Schur polynomials. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-01-01T00:00:00Z 2020 2020-12-14T14:37:57Z 2022-01-05T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10071/20917 |
url |
http://hdl.handle.net/10071/20917 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0097-3165 10.1016/j.jcta.2019.105201 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Academic Press |
publisher.none.fl_str_mv |
Academic Press |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
mluisa.alvim@gmail.com |
_version_ |
1817546343619493888 |