Meta-analysis of a very low proportion through adjusted wald confidence intervals

Detalhes bibliográficos
Autor(a) principal: Afreixo, V.
Data de Publicação: 2019
Outros Autores: Cruz, S., Freitas, A., Hernandez, M. A.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/27714
Resumo: In this paper we will discuss the meta-analysis of one low proportion. It is well known, that there are several methods to perform the meta-analysis of one proportion, based on a linear combination of proportions or transformed proportions. However, in the context of a linear combination of binomial proportions has been proposed some approximate estimators with some improvements on low proportion estimation. In this paper we will show, with a simple adaptation, the possible contribution of several approximate adjusted Wald confidence intervals (CIs) for the meta-analysis of proportions. In the context of low proportions, a simulation study scenario is carried out to compare these CIs amongst themselves and with other available methods with respect to bias and coverage probabilities, using the fixed effect or the random-effects model. Pointing our interest in rare events (analogous for the abundant events) and taking into account the prevalence estimation of the Methicillin-resistant Staphylococcus aureus with mecc gene, we discuss the choice of the meta-analysis methods on this low proportion. The default meta-analysis methods of meta-analysis software programs are not always the best choice, in particular to the meta-analysis of one low proportion, where the methods including the adjusted Wald can outperform.
id RCAP_b5de89b99945fa0aebd26f6040cf90d0
oai_identifier_str oai:ria.ua.pt:10773/27714
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Meta-analysis of a very low proportion through adjusted wald confidence intervalsMeta-analysisProportionAdjusted wald confidence intervalsLinear combination of binomial proportionsIn this paper we will discuss the meta-analysis of one low proportion. It is well known, that there are several methods to perform the meta-analysis of one proportion, based on a linear combination of proportions or transformed proportions. However, in the context of a linear combination of binomial proportions has been proposed some approximate estimators with some improvements on low proportion estimation. In this paper we will show, with a simple adaptation, the possible contribution of several approximate adjusted Wald confidence intervals (CIs) for the meta-analysis of proportions. In the context of low proportions, a simulation study scenario is carried out to compare these CIs amongst themselves and with other available methods with respect to bias and coverage probabilities, using the fixed effect or the random-effects model. Pointing our interest in rare events (analogous for the abundant events) and taking into account the prevalence estimation of the Methicillin-resistant Staphylococcus aureus with mecc gene, we discuss the choice of the meta-analysis methods on this low proportion. The default meta-analysis methods of meta-analysis software programs are not always the best choice, in particular to the meta-analysis of one low proportion, where the methods including the adjusted Wald can outperform.Crimson Publishers2020-02-28T16:10:06Z2019-07-03T00:00:00Z2019-07-03info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/27714eng2578-024710.31031/OABB.2019.02.000545Afreixo, V.Cruz, S.Freitas, A.Hernandez, M. A.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:53:42Zoai:ria.ua.pt:10773/27714Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:00:25.585629Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Meta-analysis of a very low proportion through adjusted wald confidence intervals
title Meta-analysis of a very low proportion through adjusted wald confidence intervals
spellingShingle Meta-analysis of a very low proportion through adjusted wald confidence intervals
Afreixo, V.
Meta-analysis
Proportion
Adjusted wald confidence intervals
Linear combination of binomial proportions
title_short Meta-analysis of a very low proportion through adjusted wald confidence intervals
title_full Meta-analysis of a very low proportion through adjusted wald confidence intervals
title_fullStr Meta-analysis of a very low proportion through adjusted wald confidence intervals
title_full_unstemmed Meta-analysis of a very low proportion through adjusted wald confidence intervals
title_sort Meta-analysis of a very low proportion through adjusted wald confidence intervals
author Afreixo, V.
author_facet Afreixo, V.
Cruz, S.
Freitas, A.
Hernandez, M. A.
author_role author
author2 Cruz, S.
Freitas, A.
Hernandez, M. A.
author2_role author
author
author
dc.contributor.author.fl_str_mv Afreixo, V.
Cruz, S.
Freitas, A.
Hernandez, M. A.
dc.subject.por.fl_str_mv Meta-analysis
Proportion
Adjusted wald confidence intervals
Linear combination of binomial proportions
topic Meta-analysis
Proportion
Adjusted wald confidence intervals
Linear combination of binomial proportions
description In this paper we will discuss the meta-analysis of one low proportion. It is well known, that there are several methods to perform the meta-analysis of one proportion, based on a linear combination of proportions or transformed proportions. However, in the context of a linear combination of binomial proportions has been proposed some approximate estimators with some improvements on low proportion estimation. In this paper we will show, with a simple adaptation, the possible contribution of several approximate adjusted Wald confidence intervals (CIs) for the meta-analysis of proportions. In the context of low proportions, a simulation study scenario is carried out to compare these CIs amongst themselves and with other available methods with respect to bias and coverage probabilities, using the fixed effect or the random-effects model. Pointing our interest in rare events (analogous for the abundant events) and taking into account the prevalence estimation of the Methicillin-resistant Staphylococcus aureus with mecc gene, we discuss the choice of the meta-analysis methods on this low proportion. The default meta-analysis methods of meta-analysis software programs are not always the best choice, in particular to the meta-analysis of one low proportion, where the methods including the adjusted Wald can outperform.
publishDate 2019
dc.date.none.fl_str_mv 2019-07-03T00:00:00Z
2019-07-03
2020-02-28T16:10:06Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/27714
url http://hdl.handle.net/10773/27714
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 2578-0247
10.31031/OABB.2019.02.000545
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Crimson Publishers
publisher.none.fl_str_mv Crimson Publishers
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137659493285888