A Review on Cooperative Question-Answering Systems
Autor(a) principal: | |
---|---|
Data de Publicação: | 2013 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10174/9452 |
Resumo: | The Question-Answering (QA) systems fall in the study area of Information Retrieval (IR) and Natural Language Processing (NLP). Given a set of documents, a QA system tries to obtain the correct answer to the questions posed in Natural Language (NL). Normally, the QA systems comprise three main components: question classification, information retrieval and answer extraction. Question classification plays a major role in QA systems since it classifies questions according to the type in their entities. The techniques of information retrieval are used to obtain and to extract relevant answers in the knowledge domain. Finally, the answer extraction component is an emerging topic in the QA systems. This module basically classifies and validates the candidate answers. In this paper we present an overview of the QA systems, focusing on mature work that is related to cooperative systems and that has got as knowledge domain the Semantic Web (SW). Moreover, we also present our proposal of a cooperative QA for the SW. |
id |
RCAP_b5e95b5c7850c882f28868c600f8a556 |
---|---|
oai_identifier_str |
oai:dspace.uevora.pt:10174/9452 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
A Review on Cooperative Question-Answering SystemsQuestion-Answering SystemsInformation RetrievalInformation ExtractionNatural Language ProcessingThe Question-Answering (QA) systems fall in the study area of Information Retrieval (IR) and Natural Language Processing (NLP). Given a set of documents, a QA system tries to obtain the correct answer to the questions posed in Natural Language (NL). Normally, the QA systems comprise three main components: question classification, information retrieval and answer extraction. Question classification plays a major role in QA systems since it classifies questions according to the type in their entities. The techniques of information retrieval are used to obtain and to extract relevant answers in the knowledge domain. Finally, the answer extraction component is an emerging topic in the QA systems. This module basically classifies and validates the candidate answers. In this paper we present an overview of the QA systems, focusing on mature work that is related to cooperative systems and that has got as knowledge domain the Semantic Web (SW). Moreover, we also present our proposal of a cooperative QA for the SW.2014-01-09T14:37:02Z2014-01-092013-02-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10174/9452http://hdl.handle.net/10174/9452pormelo_jiue_2013dmelo@iscac.ptipr@di.uevora.ptvbn@di.uevora.pt498Melo, DoraPimenta Rodrigues, IreneBeires Nogueira, Vitorinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-01-03T18:50:35Zoai:dspace.uevora.pt:10174/9452Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T01:03:09.991191Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
A Review on Cooperative Question-Answering Systems |
title |
A Review on Cooperative Question-Answering Systems |
spellingShingle |
A Review on Cooperative Question-Answering Systems Melo, Dora Question-Answering Systems Information Retrieval Information Extraction Natural Language Processing |
title_short |
A Review on Cooperative Question-Answering Systems |
title_full |
A Review on Cooperative Question-Answering Systems |
title_fullStr |
A Review on Cooperative Question-Answering Systems |
title_full_unstemmed |
A Review on Cooperative Question-Answering Systems |
title_sort |
A Review on Cooperative Question-Answering Systems |
author |
Melo, Dora |
author_facet |
Melo, Dora Pimenta Rodrigues, Irene Beires Nogueira, Vitor |
author_role |
author |
author2 |
Pimenta Rodrigues, Irene Beires Nogueira, Vitor |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Melo, Dora Pimenta Rodrigues, Irene Beires Nogueira, Vitor |
dc.subject.por.fl_str_mv |
Question-Answering Systems Information Retrieval Information Extraction Natural Language Processing |
topic |
Question-Answering Systems Information Retrieval Information Extraction Natural Language Processing |
description |
The Question-Answering (QA) systems fall in the study area of Information Retrieval (IR) and Natural Language Processing (NLP). Given a set of documents, a QA system tries to obtain the correct answer to the questions posed in Natural Language (NL). Normally, the QA systems comprise three main components: question classification, information retrieval and answer extraction. Question classification plays a major role in QA systems since it classifies questions according to the type in their entities. The techniques of information retrieval are used to obtain and to extract relevant answers in the knowledge domain. Finally, the answer extraction component is an emerging topic in the QA systems. This module basically classifies and validates the candidate answers. In this paper we present an overview of the QA systems, focusing on mature work that is related to cooperative systems and that has got as knowledge domain the Semantic Web (SW). Moreover, we also present our proposal of a cooperative QA for the SW. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-02-01T00:00:00Z 2014-01-09T14:37:02Z 2014-01-09 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10174/9452 http://hdl.handle.net/10174/9452 |
url |
http://hdl.handle.net/10174/9452 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
melo_jiue_2013 dmelo@iscac.pt ipr@di.uevora.pt vbn@di.uevora.pt 498 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799136515708682240 |