A genetic algorithm approach to design job rotation schedules ensuring homogeneity and diversity of exposure in the automotive industry
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/142752 |
Resumo: | Publisher Copyright: © 2022 The Author(s) |
id |
RCAP_b646e9adde05b61a4ec0383ff165d67b |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/142752 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
A genetic algorithm approach to design job rotation schedules ensuring homogeneity and diversity of exposure in the automotive industryAutomotive industryGenetic algorithmMusculoskeletal disordersOccupational risk factorsPrevention approachWorkplace interventionGeneralPublisher Copyright: © 2022 The Author(s)Job rotation is a work organization strategy with increasing popularity, given its benefits for workers and companies, especially those working with manufacturing. This study proposes a formulation to help the team leader in an assembly line of the automotive industry to achieve job rotation schedules based on three major criteria: improve diversity, ensure homogeneity, and thus reduce exposure level. The formulation relied on a genetic algorithm, that took into consideration the biomechanical risk factors (EAWS), workers’ qualifications, and the organizational aspects of the assembly line. Moreover, the job rotation plan formulated by the genetic algorithm formulation was compared with the solution provided by the team leader in a real life-environment. The formulation proved to be a reliable solution to design job rotation plans for increasing diversity, decreasing exposure, and balancing homogeneity within workers, achieving better results in all of the outcomes when compared with the job rotation schedules created by the team leader. Additionally, this solution was less time-consuming for the team leader than a manual implementation. This study provides a much-needed solution to the job rotation issue in the manufacturing industry, with the genetic algorithm taking less time and showing better results than the job rotations created by the team leaders.LIBPhys-UNLRUNAssunção, AnaMollaei, NafisehRodrigues, JoãoFujão, CarlosOsório, DanielVeloso, António P.Gamboa, HugoCarnide, Filomena2022-08-01T22:24:33Z2022-052022-05-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article14application/pdfhttp://hdl.handle.net/10362/142752eng2405-8440PURE: 45392989https://doi.org/10.1016/j.heliyon.2022.e09396info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-05-22T18:04:10Zoai:run.unl.pt:10362/142752Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-05-22T18:04:10Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
A genetic algorithm approach to design job rotation schedules ensuring homogeneity and diversity of exposure in the automotive industry |
title |
A genetic algorithm approach to design job rotation schedules ensuring homogeneity and diversity of exposure in the automotive industry |
spellingShingle |
A genetic algorithm approach to design job rotation schedules ensuring homogeneity and diversity of exposure in the automotive industry Assunção, Ana Automotive industry Genetic algorithm Musculoskeletal disorders Occupational risk factors Prevention approach Workplace intervention General |
title_short |
A genetic algorithm approach to design job rotation schedules ensuring homogeneity and diversity of exposure in the automotive industry |
title_full |
A genetic algorithm approach to design job rotation schedules ensuring homogeneity and diversity of exposure in the automotive industry |
title_fullStr |
A genetic algorithm approach to design job rotation schedules ensuring homogeneity and diversity of exposure in the automotive industry |
title_full_unstemmed |
A genetic algorithm approach to design job rotation schedules ensuring homogeneity and diversity of exposure in the automotive industry |
title_sort |
A genetic algorithm approach to design job rotation schedules ensuring homogeneity and diversity of exposure in the automotive industry |
author |
Assunção, Ana |
author_facet |
Assunção, Ana Mollaei, Nafiseh Rodrigues, João Fujão, Carlos Osório, Daniel Veloso, António P. Gamboa, Hugo Carnide, Filomena |
author_role |
author |
author2 |
Mollaei, Nafiseh Rodrigues, João Fujão, Carlos Osório, Daniel Veloso, António P. Gamboa, Hugo Carnide, Filomena |
author2_role |
author author author author author author author |
dc.contributor.none.fl_str_mv |
LIBPhys-UNL RUN |
dc.contributor.author.fl_str_mv |
Assunção, Ana Mollaei, Nafiseh Rodrigues, João Fujão, Carlos Osório, Daniel Veloso, António P. Gamboa, Hugo Carnide, Filomena |
dc.subject.por.fl_str_mv |
Automotive industry Genetic algorithm Musculoskeletal disorders Occupational risk factors Prevention approach Workplace intervention General |
topic |
Automotive industry Genetic algorithm Musculoskeletal disorders Occupational risk factors Prevention approach Workplace intervention General |
description |
Publisher Copyright: © 2022 The Author(s) |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-08-01T22:24:33Z 2022-05 2022-05-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/142752 |
url |
http://hdl.handle.net/10362/142752 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2405-8440 PURE: 45392989 https://doi.org/10.1016/j.heliyon.2022.e09396 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
14 application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
mluisa.alvim@gmail.com |
_version_ |
1817545880447746048 |