TSSEARCH
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/143322 |
Resumo: | Subsequence search and distance measures are crucial tools in time series data mining. This paper presents our Python package entitled TSSEARCH, which provides a comprehensive set of methods for subsequence search and similarity measurement in time series. These methods are user-customizable for more flexibility and efficient integration into real deployment scenarios. TSSEARCH enables fast exploratory time series data analysis and was validated in the context of human activity recognition and indoor localization. |
id |
RCAP_b64ba5a5287fa4390d10897d0b6c7b67 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/143322 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
TSSEARCHTime Series Subsequence Search LibraryTime seriesSubsequence searchDistancesSimilarity measurementsQuery-based searchSegmentationPython packageSubsequence search and distance measures are crucial tools in time series data mining. This paper presents our Python package entitled TSSEARCH, which provides a comprehensive set of methods for subsequence search and similarity measurement in time series. These methods are user-customizable for more flexibility and efficient integration into real deployment scenarios. TSSEARCH enables fast exploratory time series data analysis and was validated in the context of human activity recognition and indoor localization.LIBPhys-UNLRUNFolgado, DuarteBarandas, MaríliaAntunes, MargaridaNunes, Maria LuaLiu, HuiHartmann, YaleSchultz, TanjaGamboa, Hugo2022-08-26T22:17:22Z2022-062022-06-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article5application/pdfhttp://hdl.handle.net/10362/143322eng2352-7110PURE: 45154650https://doi.org/10.1016/j.softx.2022.101049info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-05-22T18:04:43Zoai:run.unl.pt:10362/143322Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-05-22T18:04:43Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
TSSEARCH Time Series Subsequence Search Library |
title |
TSSEARCH |
spellingShingle |
TSSEARCH Folgado, Duarte Time series Subsequence search Distances Similarity measurements Query-based search Segmentation Python package |
title_short |
TSSEARCH |
title_full |
TSSEARCH |
title_fullStr |
TSSEARCH |
title_full_unstemmed |
TSSEARCH |
title_sort |
TSSEARCH |
author |
Folgado, Duarte |
author_facet |
Folgado, Duarte Barandas, Marília Antunes, Margarida Nunes, Maria Lua Liu, Hui Hartmann, Yale Schultz, Tanja Gamboa, Hugo |
author_role |
author |
author2 |
Barandas, Marília Antunes, Margarida Nunes, Maria Lua Liu, Hui Hartmann, Yale Schultz, Tanja Gamboa, Hugo |
author2_role |
author author author author author author author |
dc.contributor.none.fl_str_mv |
LIBPhys-UNL RUN |
dc.contributor.author.fl_str_mv |
Folgado, Duarte Barandas, Marília Antunes, Margarida Nunes, Maria Lua Liu, Hui Hartmann, Yale Schultz, Tanja Gamboa, Hugo |
dc.subject.por.fl_str_mv |
Time series Subsequence search Distances Similarity measurements Query-based search Segmentation Python package |
topic |
Time series Subsequence search Distances Similarity measurements Query-based search Segmentation Python package |
description |
Subsequence search and distance measures are crucial tools in time series data mining. This paper presents our Python package entitled TSSEARCH, which provides a comprehensive set of methods for subsequence search and similarity measurement in time series. These methods are user-customizable for more flexibility and efficient integration into real deployment scenarios. TSSEARCH enables fast exploratory time series data analysis and was validated in the context of human activity recognition and indoor localization. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-08-26T22:17:22Z 2022-06 2022-06-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/143322 |
url |
http://hdl.handle.net/10362/143322 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2352-7110 PURE: 45154650 https://doi.org/10.1016/j.softx.2022.101049 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
5 application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
mluisa.alvim@gmail.com |
_version_ |
1817545883685748736 |