Compartment-dependent activities of Wnt3a/β-catenin signaling during vertebrate axial extension
Autor(a) principal: | |
---|---|
Data de Publicação: | 2014 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.7/674 |
Resumo: | Extension of the vertebrate body results from the concerted activity of many signals in the posterior embryonic end. Among them, Wnt3a has been shown to play relevant roles in the regulation of axial progenitor activity, mesoderm formation and somitogenesis. However, its impact on axial growth remains to be fully understood. Using a transgenic approach in the mouse, we found that the effect of Wnt3a signaling varies depending on the target tissue. High levels of Wnt3a in the epiblast prevented formation of neural tissues, but did not impair axial progenitors from producing different mesodermal lineages. These mesodermal tissues maintained a remarkable degree of organization, even within a severely malformed embryo. However, from the cells that failed to take a neural fate, only those that left the epithelial layer of the epiblast activated a mesodermal program. The remaining tissue accumulated as a folded epithelium that kept some epiblast-like characteristics. Together with previously published observations, our results suggest a dose-dependent role for Wnt3a in regulating the balance between renewal and selection of differentiation fates of axial progenitors in the epiblast. In the paraxial mesoderm, appropriate regulation of Wnt/β-catenin signaling was required not only for somitogenesis, but also for providing proper anterior-posterior polarity to the somites. Both processes seem to rely on mechanisms with different requirements for feedback modulation of Wnt/β-catenin signaling, once segmentation occurred in the presence of high levels of Wnt3a in the presomitic mesoderm, but not after permanent expression of a constitutively active form of β-catenin. Together, our findings suggest that Wnt3a/β-catenin signaling plays sequential roles during posterior extension, which are strongly dependent on the target tissue. This provides an additional example of how much the functional output of signaling systems depends on the competence of the responding cells. |
id |
RCAP_b70c2e1227036f71192fa4627ee592da |
---|---|
oai_identifier_str |
oai:arca.igc.gulbenkian.pt:10400.7/674 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Compartment-dependent activities of Wnt3a/β-catenin signaling during vertebrate axial extensionAnimalsBody PatterningCell DifferentiationMiceMice, TransgenicMicroscopy, ConfocalSignal TransductionWnt3A Proteinbeta CateninExtension of the vertebrate body results from the concerted activity of many signals in the posterior embryonic end. Among them, Wnt3a has been shown to play relevant roles in the regulation of axial progenitor activity, mesoderm formation and somitogenesis. However, its impact on axial growth remains to be fully understood. Using a transgenic approach in the mouse, we found that the effect of Wnt3a signaling varies depending on the target tissue. High levels of Wnt3a in the epiblast prevented formation of neural tissues, but did not impair axial progenitors from producing different mesodermal lineages. These mesodermal tissues maintained a remarkable degree of organization, even within a severely malformed embryo. However, from the cells that failed to take a neural fate, only those that left the epithelial layer of the epiblast activated a mesodermal program. The remaining tissue accumulated as a folded epithelium that kept some epiblast-like characteristics. Together with previously published observations, our results suggest a dose-dependent role for Wnt3a in regulating the balance between renewal and selection of differentiation fates of axial progenitors in the epiblast. In the paraxial mesoderm, appropriate regulation of Wnt/β-catenin signaling was required not only for somitogenesis, but also for providing proper anterior-posterior polarity to the somites. Both processes seem to rely on mechanisms with different requirements for feedback modulation of Wnt/β-catenin signaling, once segmentation occurred in the presence of high levels of Wnt3a in the presomitic mesoderm, but not after permanent expression of a constitutively active form of β-catenin. Together, our findings suggest that Wnt3a/β-catenin signaling plays sequential roles during posterior extension, which are strongly dependent on the target tissue. This provides an additional example of how much the functional output of signaling systems depends on the competence of the responding cells.Fundação para a Ciência e a Tecnologia: (PTDC/BIA-BCM/110638/2009, PTDC/SAU-BID/110640/2009, SFRH/BD/33562/2008, SFRH/BD/51876/2012).Elsivier Science BVARCAJurberg, Arnon DiasAires, RitaNóvoa, AnaRowland, Jennifer ElizabethMallo, Moisés2016-06-29T12:22:50Z2014-10-152014-10-15T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.7/674engArnon Dias Jurberg, Rita Aires, Ana Nóvoa, Jennifer Elizabeth Rowland, Moisés Mallo, Compartment-dependent activities of Wnt3a/β-catenin signaling during vertebrate axial extension, Developmental Biology, Volume 394, Issue 2, 15 October 2014, Pages 253-263, ISSN 0012-1606, http://dx.doi.org/10.1016/j.ydbio.2014.08.012. (http://www.sciencedirect.com/science/article/pii/S0012160614004035) Keywords: Wnt signaling; Axial progenitors; Patterning; Mouse development10.1016/j.ydbio.2014.08.012info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2022-11-29T14:35:03Zoai:arca.igc.gulbenkian.pt:10400.7/674Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T16:11:54.654091Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Compartment-dependent activities of Wnt3a/β-catenin signaling during vertebrate axial extension |
title |
Compartment-dependent activities of Wnt3a/β-catenin signaling during vertebrate axial extension |
spellingShingle |
Compartment-dependent activities of Wnt3a/β-catenin signaling during vertebrate axial extension Jurberg, Arnon Dias Animals Body Patterning Cell Differentiation Mice Mice, Transgenic Microscopy, Confocal Signal Transduction Wnt3A Protein beta Catenin |
title_short |
Compartment-dependent activities of Wnt3a/β-catenin signaling during vertebrate axial extension |
title_full |
Compartment-dependent activities of Wnt3a/β-catenin signaling during vertebrate axial extension |
title_fullStr |
Compartment-dependent activities of Wnt3a/β-catenin signaling during vertebrate axial extension |
title_full_unstemmed |
Compartment-dependent activities of Wnt3a/β-catenin signaling during vertebrate axial extension |
title_sort |
Compartment-dependent activities of Wnt3a/β-catenin signaling during vertebrate axial extension |
author |
Jurberg, Arnon Dias |
author_facet |
Jurberg, Arnon Dias Aires, Rita Nóvoa, Ana Rowland, Jennifer Elizabeth Mallo, Moisés |
author_role |
author |
author2 |
Aires, Rita Nóvoa, Ana Rowland, Jennifer Elizabeth Mallo, Moisés |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
ARCA |
dc.contributor.author.fl_str_mv |
Jurberg, Arnon Dias Aires, Rita Nóvoa, Ana Rowland, Jennifer Elizabeth Mallo, Moisés |
dc.subject.por.fl_str_mv |
Animals Body Patterning Cell Differentiation Mice Mice, Transgenic Microscopy, Confocal Signal Transduction Wnt3A Protein beta Catenin |
topic |
Animals Body Patterning Cell Differentiation Mice Mice, Transgenic Microscopy, Confocal Signal Transduction Wnt3A Protein beta Catenin |
description |
Extension of the vertebrate body results from the concerted activity of many signals in the posterior embryonic end. Among them, Wnt3a has been shown to play relevant roles in the regulation of axial progenitor activity, mesoderm formation and somitogenesis. However, its impact on axial growth remains to be fully understood. Using a transgenic approach in the mouse, we found that the effect of Wnt3a signaling varies depending on the target tissue. High levels of Wnt3a in the epiblast prevented formation of neural tissues, but did not impair axial progenitors from producing different mesodermal lineages. These mesodermal tissues maintained a remarkable degree of organization, even within a severely malformed embryo. However, from the cells that failed to take a neural fate, only those that left the epithelial layer of the epiblast activated a mesodermal program. The remaining tissue accumulated as a folded epithelium that kept some epiblast-like characteristics. Together with previously published observations, our results suggest a dose-dependent role for Wnt3a in regulating the balance between renewal and selection of differentiation fates of axial progenitors in the epiblast. In the paraxial mesoderm, appropriate regulation of Wnt/β-catenin signaling was required not only for somitogenesis, but also for providing proper anterior-posterior polarity to the somites. Both processes seem to rely on mechanisms with different requirements for feedback modulation of Wnt/β-catenin signaling, once segmentation occurred in the presence of high levels of Wnt3a in the presomitic mesoderm, but not after permanent expression of a constitutively active form of β-catenin. Together, our findings suggest that Wnt3a/β-catenin signaling plays sequential roles during posterior extension, which are strongly dependent on the target tissue. This provides an additional example of how much the functional output of signaling systems depends on the competence of the responding cells. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-10-15 2014-10-15T00:00:00Z 2016-06-29T12:22:50Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.7/674 |
url |
http://hdl.handle.net/10400.7/674 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Arnon Dias Jurberg, Rita Aires, Ana Nóvoa, Jennifer Elizabeth Rowland, Moisés Mallo, Compartment-dependent activities of Wnt3a/β-catenin signaling during vertebrate axial extension, Developmental Biology, Volume 394, Issue 2, 15 October 2014, Pages 253-263, ISSN 0012-1606, http://dx.doi.org/10.1016/j.ydbio.2014.08.012. (http://www.sciencedirect.com/science/article/pii/S0012160614004035) Keywords: Wnt signaling; Axial progenitors; Patterning; Mouse development 10.1016/j.ydbio.2014.08.012 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsivier Science BV |
publisher.none.fl_str_mv |
Elsivier Science BV |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799130574647984128 |