Decision support system for city public transportation
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/23532 |
Resumo: | Nowadays, the technology to turn cities smart already exists. Smart Cities, as they are called, are capable to sense, analyze and react: sense through the set of sensors displaced along the city, as they are sensors either xed (for environmental monitoring) or moving (for instance, citizens with their smartphones). A notable case is Porto, which incorporates a mesh network with more than 600 vehicles (buses, taxis and garbage trucks), communicating in-between and enabling the passengers of the buses of the city major bus carrier to access freely to the Internet while commuting. A vehicular network like this has huge positive impact in the city mobility, which is one of the biggest concerns of the governmental institutions. Therefore, it is crucial to understand what can be done to improve mobility. By analyzing the data generated by the movement of the buses, it is possible to deliver a new set of tools that might be useful for the everyday life of the bus passengers and bus eet managers. From the passengers perspective, the utility can be brought by the introduction of smart schedules, which consists on delivering estimated time of arrival that is adapting itself to the city dynamics, through the evolution of the time, and that can be accessed directly from their smartphones. From the perspective of the bus eet managers, it is possible to deliver insights about the usual behaviour of their bus lines, giving openness for them to react to the new or abnormal city public transportation dynamics. This dissertation presents an approach for analyzing the data descendent from the vehicular network and how to use it to answer the previously addressed problems. Regarding the missing link between the GPS trace from the bus and the bus line that they are doing, a map-matching algorithm is implemented. That turns possible the computation of estimations and predictions of the bus' passing times. In what concerns prediction, three machine learning ensemble algorithms have been tested. Finally, proof-ofconcept applications are implemented to demonstrate the real-life applicability, by helping the bus passengers and bus eet managers to react to the di erent events of their quotidian. The results show that the map-matching algorithm presents a good quality. Also, they demonstrate that the best machine learning algorithm, considering the prediction error, is Bagging using Support Vector Regressor as the base estimator. Finally, the pro les obtained in the performance dashboard enable distinction between optimal and non-optimal bus lines. |
id |
RCAP_b7a6a9edaef0e729d441c92ad4ee23b9 |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/23532 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Decision support system for city public transportationTransportes urbanosGestão de transportesComunicações móveisTomada de decisão (Estatística)Nowadays, the technology to turn cities smart already exists. Smart Cities, as they are called, are capable to sense, analyze and react: sense through the set of sensors displaced along the city, as they are sensors either xed (for environmental monitoring) or moving (for instance, citizens with their smartphones). A notable case is Porto, which incorporates a mesh network with more than 600 vehicles (buses, taxis and garbage trucks), communicating in-between and enabling the passengers of the buses of the city major bus carrier to access freely to the Internet while commuting. A vehicular network like this has huge positive impact in the city mobility, which is one of the biggest concerns of the governmental institutions. Therefore, it is crucial to understand what can be done to improve mobility. By analyzing the data generated by the movement of the buses, it is possible to deliver a new set of tools that might be useful for the everyday life of the bus passengers and bus eet managers. From the passengers perspective, the utility can be brought by the introduction of smart schedules, which consists on delivering estimated time of arrival that is adapting itself to the city dynamics, through the evolution of the time, and that can be accessed directly from their smartphones. From the perspective of the bus eet managers, it is possible to deliver insights about the usual behaviour of their bus lines, giving openness for them to react to the new or abnormal city public transportation dynamics. This dissertation presents an approach for analyzing the data descendent from the vehicular network and how to use it to answer the previously addressed problems. Regarding the missing link between the GPS trace from the bus and the bus line that they are doing, a map-matching algorithm is implemented. That turns possible the computation of estimations and predictions of the bus' passing times. In what concerns prediction, three machine learning ensemble algorithms have been tested. Finally, proof-ofconcept applications are implemented to demonstrate the real-life applicability, by helping the bus passengers and bus eet managers to react to the di erent events of their quotidian. The results show that the map-matching algorithm presents a good quality. Also, they demonstrate that the best machine learning algorithm, considering the prediction error, is Bagging using Support Vector Regressor as the base estimator. Finally, the pro les obtained in the performance dashboard enable distinction between optimal and non-optimal bus lines.Hoje em dia existe tecnologia para tornar as cidades inteligentes. As cidades inteligentes s~ao capazes de sentir, analisar e reagir: sentir através dos variados sensores espalhados em torno da cidade, sensores estes que podem ser fixos (sensores para a monitorização do estado ambiental) ou moveis (por exemplo, os cidadãos, graças aos seus smartphones). Um caso notável e o da cidade do Porto, que incorpora uma rede em malha com mais de 600 veículos (autocarros, táxis e camiões do lixo) que comunicam entre si, habilitando os passageiros dos autocarros da maior operadora da cidade a navegar na internet gratuitamente, enquanto viajam. O maior impacto de uma rede como esta e a mobilidade; e uma das preocupações das instituições governamentais locais e como elas podem melhorar a mobilidade. E por isso crucial analisar o que pode ser feito para melhorar a mobilidade de uma cidade. Utilizando os dados gerados pelo movimento dos autocarros e possível fornecer um conjunto de novas utilidades praticas que podem ser úteis ao quotidiano dos cidadãos e dos gestores de frota. Na perspectiva dos passageiros pode ser introduzido o conceito de smart schedule que consiste em fornecer o tempo estimado de chegada de um autocarro que se vai adaptando ao longo do tempo, de acordo com a dinâmica da cidade, que pode ser acedido directamente a partir do seu smartphone. Na perspectiva dos gestores de frota e possível fornecer introespecções sobre o comportamento habitual das linhas de autocarros, dando abertura a que estes sejam capazes de melhor reagir a novas ou anormais dinâmicas dos transportes públicos da cidade. Esta dissertação apresenta uma abordagem para analisar os dados provenientes da rede veicular e de como usa-los para tornar as ideias previamente esclarecidas, possíveis. Devido a inexistência da identificação do trafico GPS a uma linha de autocarro, um algoritmo de map-matching foi implementado. Isso torna a computação de estimações e predições sobre o tempo de passagem dos autocarros possível. No que toca a predição, foram testados três algoritmos diferentes de aprendizagem automática em conjunto para a construção de modelos preditivos. Porem, foram implementadas aplicações como prova de conceito que demonstram a aplicabilidade no mundo real, ajudando os passageiros dos autocarros e os gestores de frota a reagir aos diferentes eventos do seu quotidiano. Os resultados demonstram que o algoritmo de map-matching apresenta uma boa qualidade. Também demonstram que o melhor algoritmo de aprendizagem automática, considerando o erro de predição, e o Bagging utilizando como estimador base Support Vector Regressor. Porém, os pers obtidos pelo painel de controlo permitem distinguir linhas de autocarro com um funcionamento óptimo daquelas em que o funcionamento e insatisfação.Universidade de Aveiro2018-06-15T13:25:04Z2017-01-01T00:00:00Z2017info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/23532TID:201937840engRicardo, Leandro Jorge Correiainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:45:49Zoai:ria.ua.pt:10773/23532Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T02:57:15.498092Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Decision support system for city public transportation |
title |
Decision support system for city public transportation |
spellingShingle |
Decision support system for city public transportation Ricardo, Leandro Jorge Correia Transportes urbanos Gestão de transportes Comunicações móveis Tomada de decisão (Estatística) |
title_short |
Decision support system for city public transportation |
title_full |
Decision support system for city public transportation |
title_fullStr |
Decision support system for city public transportation |
title_full_unstemmed |
Decision support system for city public transportation |
title_sort |
Decision support system for city public transportation |
author |
Ricardo, Leandro Jorge Correia |
author_facet |
Ricardo, Leandro Jorge Correia |
author_role |
author |
dc.contributor.author.fl_str_mv |
Ricardo, Leandro Jorge Correia |
dc.subject.por.fl_str_mv |
Transportes urbanos Gestão de transportes Comunicações móveis Tomada de decisão (Estatística) |
topic |
Transportes urbanos Gestão de transportes Comunicações móveis Tomada de decisão (Estatística) |
description |
Nowadays, the technology to turn cities smart already exists. Smart Cities, as they are called, are capable to sense, analyze and react: sense through the set of sensors displaced along the city, as they are sensors either xed (for environmental monitoring) or moving (for instance, citizens with their smartphones). A notable case is Porto, which incorporates a mesh network with more than 600 vehicles (buses, taxis and garbage trucks), communicating in-between and enabling the passengers of the buses of the city major bus carrier to access freely to the Internet while commuting. A vehicular network like this has huge positive impact in the city mobility, which is one of the biggest concerns of the governmental institutions. Therefore, it is crucial to understand what can be done to improve mobility. By analyzing the data generated by the movement of the buses, it is possible to deliver a new set of tools that might be useful for the everyday life of the bus passengers and bus eet managers. From the passengers perspective, the utility can be brought by the introduction of smart schedules, which consists on delivering estimated time of arrival that is adapting itself to the city dynamics, through the evolution of the time, and that can be accessed directly from their smartphones. From the perspective of the bus eet managers, it is possible to deliver insights about the usual behaviour of their bus lines, giving openness for them to react to the new or abnormal city public transportation dynamics. This dissertation presents an approach for analyzing the data descendent from the vehicular network and how to use it to answer the previously addressed problems. Regarding the missing link between the GPS trace from the bus and the bus line that they are doing, a map-matching algorithm is implemented. That turns possible the computation of estimations and predictions of the bus' passing times. In what concerns prediction, three machine learning ensemble algorithms have been tested. Finally, proof-ofconcept applications are implemented to demonstrate the real-life applicability, by helping the bus passengers and bus eet managers to react to the di erent events of their quotidian. The results show that the map-matching algorithm presents a good quality. Also, they demonstrate that the best machine learning algorithm, considering the prediction error, is Bagging using Support Vector Regressor as the base estimator. Finally, the pro les obtained in the performance dashboard enable distinction between optimal and non-optimal bus lines. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-01-01T00:00:00Z 2017 2018-06-15T13:25:04Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/23532 TID:201937840 |
url |
http://hdl.handle.net/10773/23532 |
identifier_str_mv |
TID:201937840 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade de Aveiro |
publisher.none.fl_str_mv |
Universidade de Aveiro |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137626340458496 |