Projection to latent correlative structures, a dimension reduction strategy for spectral-based classification
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | https://hdl.handle.net/10216/140076 |
Resumo: | Latent variables are used in chemometrics to reduce the dimension of the data. It is a crucial step with spectroscopic data where the number of explanatory variables can be very high. Principal component analysis (PCA) and partial least squares (PLS) are the most common. However, the resulting latent variables are mathematical constructs that do not always have a physicochemical interpretation. A new data reduction strategy, named projection to latent correlative structures (PLCS), is introduced in this manuscript. This approach requires a set of model spectra that will be used as references. Each latent variable is the relative similarity of a given spectrum to a pair of reference spectra. The latent structure is obtained using every possible combination of reference pairing. The approach has been validated using more than 500 FTIR-ATR spectra from cool-season culinary grain legumes assembled from germplasm banks and breeders' working collections. PLCS has been combined with soft discriminant analysis to detect outliers that could be particularly suitable for a deeper analysis. |
id |
RCAP_b7aff57cd855a4adf91034d9b97edf6e |
---|---|
oai_identifier_str |
oai:repositorio-aberto.up.pt:10216/140076 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Projection to latent correlative structures, a dimension reduction strategy for spectral-based classificationQuímica analíticaAnalytical chemistryLatent variables are used in chemometrics to reduce the dimension of the data. It is a crucial step with spectroscopic data where the number of explanatory variables can be very high. Principal component analysis (PCA) and partial least squares (PLS) are the most common. However, the resulting latent variables are mathematical constructs that do not always have a physicochemical interpretation. A new data reduction strategy, named projection to latent correlative structures (PLCS), is introduced in this manuscript. This approach requires a set of model spectra that will be used as references. Each latent variable is the relative similarity of a given spectrum to a pair of reference spectra. The latent structure is obtained using every possible combination of reference pairing. The approach has been validated using more than 500 FTIR-ATR spectra from cool-season culinary grain legumes assembled from germplasm banks and breeders' working collections. PLCS has been combined with soft discriminant analysis to detect outliers that could be particularly suitable for a deeper analysis.20212021-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/10216/140076eng2046-206910.1039/d1ra03359jGuillaume ErnyElsa BritoAna Bárbara PereiraAndreia Bento-SilvaMaria Carlota Vaz PattoMaria Rosario Bronzeinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-29T13:17:40Zoai:repositorio-aberto.up.pt:10216/140076Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T23:37:45.119652Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Projection to latent correlative structures, a dimension reduction strategy for spectral-based classification |
title |
Projection to latent correlative structures, a dimension reduction strategy for spectral-based classification |
spellingShingle |
Projection to latent correlative structures, a dimension reduction strategy for spectral-based classification Guillaume Erny Química analítica Analytical chemistry |
title_short |
Projection to latent correlative structures, a dimension reduction strategy for spectral-based classification |
title_full |
Projection to latent correlative structures, a dimension reduction strategy for spectral-based classification |
title_fullStr |
Projection to latent correlative structures, a dimension reduction strategy for spectral-based classification |
title_full_unstemmed |
Projection to latent correlative structures, a dimension reduction strategy for spectral-based classification |
title_sort |
Projection to latent correlative structures, a dimension reduction strategy for spectral-based classification |
author |
Guillaume Erny |
author_facet |
Guillaume Erny Elsa Brito Ana Bárbara Pereira Andreia Bento-Silva Maria Carlota Vaz Patto Maria Rosario Bronze |
author_role |
author |
author2 |
Elsa Brito Ana Bárbara Pereira Andreia Bento-Silva Maria Carlota Vaz Patto Maria Rosario Bronze |
author2_role |
author author author author author |
dc.contributor.author.fl_str_mv |
Guillaume Erny Elsa Brito Ana Bárbara Pereira Andreia Bento-Silva Maria Carlota Vaz Patto Maria Rosario Bronze |
dc.subject.por.fl_str_mv |
Química analítica Analytical chemistry |
topic |
Química analítica Analytical chemistry |
description |
Latent variables are used in chemometrics to reduce the dimension of the data. It is a crucial step with spectroscopic data where the number of explanatory variables can be very high. Principal component analysis (PCA) and partial least squares (PLS) are the most common. However, the resulting latent variables are mathematical constructs that do not always have a physicochemical interpretation. A new data reduction strategy, named projection to latent correlative structures (PLCS), is introduced in this manuscript. This approach requires a set of model spectra that will be used as references. Each latent variable is the relative similarity of a given spectrum to a pair of reference spectra. The latent structure is obtained using every possible combination of reference pairing. The approach has been validated using more than 500 FTIR-ATR spectra from cool-season culinary grain legumes assembled from germplasm banks and breeders' working collections. PLCS has been combined with soft discriminant analysis to detect outliers that could be particularly suitable for a deeper analysis. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021 2021-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/10216/140076 |
url |
https://hdl.handle.net/10216/140076 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2046-2069 10.1039/d1ra03359j |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799135690956472320 |