Quaternionic convolutional neural networks with trainable Bessel activation functions
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/39163 |
Resumo: | Quaternionic Convolutional Neural Networks (QCNN) possess the ability to capture both external dependencies between neighboring features and internal latent dependencies within features of an input vector. In this study, we employ QCNN with activation functions based on Bessel-type functions with trainable parameters, for performing classification tasks. Our experimental results demonstrate that this activation function outperforms the traditional ReLU activation function. Throughout our simulations, we explore various network architectures. The use of activation functions with trainable parameters offers several advantages, including enhanced flexibility, adaptability, improved learning, customized model behavior, and automatic feature extraction. |
id |
RCAP_b7b853390803aff7a36107f49bd19c34 |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/39163 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Quaternionic convolutional neural networks with trainable Bessel activation functionsArtificial neural networks and deep learningActivation functionsQuaternionic convolutional neural networksBessel functionsParametric activation functionsQuaternionic Convolutional Neural Networks (QCNN) possess the ability to capture both external dependencies between neighboring features and internal latent dependencies within features of an input vector. In this study, we employ QCNN with activation functions based on Bessel-type functions with trainable parameters, for performing classification tasks. Our experimental results demonstrate that this activation function outperforms the traditional ReLU activation function. Throughout our simulations, we explore various network architectures. The use of activation functions with trainable parameters offers several advantages, including enhanced flexibility, adaptability, improved learning, customized model behavior, and automatic feature extraction.Springer2023-07-31T16:15:54Z2023-09-01T00:00:00Z2023-09info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/39163eng1661-825410.1007/s11785-023-01387-zVieira, Nelsoninfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-05-06T04:48:16Zoai:ria.ua.pt:10773/39163Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-05-06T04:48:16Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Quaternionic convolutional neural networks with trainable Bessel activation functions |
title |
Quaternionic convolutional neural networks with trainable Bessel activation functions |
spellingShingle |
Quaternionic convolutional neural networks with trainable Bessel activation functions Vieira, Nelson Artificial neural networks and deep learning Activation functions Quaternionic convolutional neural networks Bessel functions Parametric activation functions |
title_short |
Quaternionic convolutional neural networks with trainable Bessel activation functions |
title_full |
Quaternionic convolutional neural networks with trainable Bessel activation functions |
title_fullStr |
Quaternionic convolutional neural networks with trainable Bessel activation functions |
title_full_unstemmed |
Quaternionic convolutional neural networks with trainable Bessel activation functions |
title_sort |
Quaternionic convolutional neural networks with trainable Bessel activation functions |
author |
Vieira, Nelson |
author_facet |
Vieira, Nelson |
author_role |
author |
dc.contributor.author.fl_str_mv |
Vieira, Nelson |
dc.subject.por.fl_str_mv |
Artificial neural networks and deep learning Activation functions Quaternionic convolutional neural networks Bessel functions Parametric activation functions |
topic |
Artificial neural networks and deep learning Activation functions Quaternionic convolutional neural networks Bessel functions Parametric activation functions |
description |
Quaternionic Convolutional Neural Networks (QCNN) possess the ability to capture both external dependencies between neighboring features and internal latent dependencies within features of an input vector. In this study, we employ QCNN with activation functions based on Bessel-type functions with trainable parameters, for performing classification tasks. Our experimental results demonstrate that this activation function outperforms the traditional ReLU activation function. Throughout our simulations, we explore various network architectures. The use of activation functions with trainable parameters offers several advantages, including enhanced flexibility, adaptability, improved learning, customized model behavior, and automatic feature extraction. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-07-31T16:15:54Z 2023-09-01T00:00:00Z 2023-09 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/39163 |
url |
http://hdl.handle.net/10773/39163 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1661-8254 10.1007/s11785-023-01387-z |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
mluisa.alvim@gmail.com |
_version_ |
1817543868222013440 |