Quaternionic convolutional neural networks with trainable Bessel activation functions

Detalhes bibliográficos
Autor(a) principal: Vieira, Nelson
Data de Publicação: 2023
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/39163
Resumo: Quaternionic Convolutional Neural Networks (QCNN) possess the ability to capture both external dependencies between neighboring features and internal latent dependencies within features of an input vector. In this study, we employ QCNN with activation functions based on Bessel-type functions with trainable parameters, for performing classification tasks. Our experimental results demonstrate that this activation function outperforms the traditional ReLU activation function. Throughout our simulations, we explore various network architectures. The use of activation functions with trainable parameters offers several advantages, including enhanced flexibility, adaptability, improved learning, customized model behavior, and automatic feature extraction.
id RCAP_b7b853390803aff7a36107f49bd19c34
oai_identifier_str oai:ria.ua.pt:10773/39163
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Quaternionic convolutional neural networks with trainable Bessel activation functionsArtificial neural networks and deep learningActivation functionsQuaternionic convolutional neural networksBessel functionsParametric activation functionsQuaternionic Convolutional Neural Networks (QCNN) possess the ability to capture both external dependencies between neighboring features and internal latent dependencies within features of an input vector. In this study, we employ QCNN with activation functions based on Bessel-type functions with trainable parameters, for performing classification tasks. Our experimental results demonstrate that this activation function outperforms the traditional ReLU activation function. Throughout our simulations, we explore various network architectures. The use of activation functions with trainable parameters offers several advantages, including enhanced flexibility, adaptability, improved learning, customized model behavior, and automatic feature extraction.Springer2023-07-31T16:15:54Z2023-09-01T00:00:00Z2023-09info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/39163eng1661-825410.1007/s11785-023-01387-zVieira, Nelsoninfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-05-06T04:48:16Zoai:ria.ua.pt:10773/39163Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-05-06T04:48:16Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Quaternionic convolutional neural networks with trainable Bessel activation functions
title Quaternionic convolutional neural networks with trainable Bessel activation functions
spellingShingle Quaternionic convolutional neural networks with trainable Bessel activation functions
Vieira, Nelson
Artificial neural networks and deep learning
Activation functions
Quaternionic convolutional neural networks
Bessel functions
Parametric activation functions
title_short Quaternionic convolutional neural networks with trainable Bessel activation functions
title_full Quaternionic convolutional neural networks with trainable Bessel activation functions
title_fullStr Quaternionic convolutional neural networks with trainable Bessel activation functions
title_full_unstemmed Quaternionic convolutional neural networks with trainable Bessel activation functions
title_sort Quaternionic convolutional neural networks with trainable Bessel activation functions
author Vieira, Nelson
author_facet Vieira, Nelson
author_role author
dc.contributor.author.fl_str_mv Vieira, Nelson
dc.subject.por.fl_str_mv Artificial neural networks and deep learning
Activation functions
Quaternionic convolutional neural networks
Bessel functions
Parametric activation functions
topic Artificial neural networks and deep learning
Activation functions
Quaternionic convolutional neural networks
Bessel functions
Parametric activation functions
description Quaternionic Convolutional Neural Networks (QCNN) possess the ability to capture both external dependencies between neighboring features and internal latent dependencies within features of an input vector. In this study, we employ QCNN with activation functions based on Bessel-type functions with trainable parameters, for performing classification tasks. Our experimental results demonstrate that this activation function outperforms the traditional ReLU activation function. Throughout our simulations, we explore various network architectures. The use of activation functions with trainable parameters offers several advantages, including enhanced flexibility, adaptability, improved learning, customized model behavior, and automatic feature extraction.
publishDate 2023
dc.date.none.fl_str_mv 2023-07-31T16:15:54Z
2023-09-01T00:00:00Z
2023-09
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/39163
url http://hdl.handle.net/10773/39163
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1661-8254
10.1007/s11785-023-01387-z
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv mluisa.alvim@gmail.com
_version_ 1817543868222013440