Applicability of Multispectral Imagery for Detection of Prescribed Fires and Rekindling
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/120564 |
Resumo: | Forest fires are an increasingly relevant problem nowadays with the worsening of global warming’s most severe consequences. These fire occurrences, that can cause immense damage to forest ecosystems and have a great negative impact in peoples lives,begin often with rekindles. These problems can be very difficult to tackle, needing to involve a lot of people to surveil the areas at risk. A system capable of executing this surveillance protocol and alerting the fire fighting authorities of fire and possible rekindle occurrences would be extremely beneficial in these scenarios.A system aiming to achieve this goal is being implemented, composed of an UAV equipped with a multispectral camera, capturing aerial images of these areas. This dissertation presents a fire detection model to be used in prescribed fires and rekindling situations, identifying fire instances within the captured images. It makes use of the camera’s various spectral bands to highlight the areas at greatest risk and of deep learning technology to autonomously recognise these areas. |
id |
RCAP_b7e70da6ca2f60f96d7cee784efb1a9f |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/120564 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Applicability of Multispectral Imagery for Detection of Prescribed Fires and RekindlingForest FiresDeep LearningConvolutional Neural NetworkComputer VisionMultispectral SensorMask R-CNNDomínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e InformáticaForest fires are an increasingly relevant problem nowadays with the worsening of global warming’s most severe consequences. These fire occurrences, that can cause immense damage to forest ecosystems and have a great negative impact in peoples lives,begin often with rekindles. These problems can be very difficult to tackle, needing to involve a lot of people to surveil the areas at risk. A system capable of executing this surveillance protocol and alerting the fire fighting authorities of fire and possible rekindle occurrences would be extremely beneficial in these scenarios.A system aiming to achieve this goal is being implemented, composed of an UAV equipped with a multispectral camera, capturing aerial images of these areas. This dissertation presents a fire detection model to be used in prescribed fires and rekindling situations, identifying fire instances within the captured images. It makes use of the camera’s various spectral bands to highlight the areas at greatest risk and of deep learning technology to autonomously recognise these areas.Incêndios florestais são um problema cada vez mais relevante nos dias de hoje com o agravamento das consequências mais graves do aquecimento global. Estas ocorrências,que podem causar imensos danos aos ecossistemas florestais e ter um grande impacto negativo na vida das pessoas, são muitas vezes iniciadas por reacendimentos. Estes problemas podem ser muito difíceis de combater, necessitando de envolver muitas pessoas para vigiar as áreas de risco. Um sistema capaz de executar este protocolo de vigilância e alertar as autoridades de combate a incêndio sobre fogos e possíveis reacendimentos seria extremamente benéfico nestes cenários.Para alcançar este objetivo, está a ser implementado um sistema composto por um UAV, equipado com uma câmera multiespectral, que irá capturar imagens aéreas dessas áreas. Esta dissertação apresenta um modelo de detecção de incêndios para ser utilizado em situações de fogos controlados e reacendimentos, identificando ocorrências de fogo nas imagens capturadas. Faz uso das várias bandas espectrais da câmera para destacar as áreas de maior risco e de tecnologia de aprendizagem automática para reconhecer essas áreas de forma autônoma.Oliveira, JoséMarques, FranciscoRUNEusébio, Pedro Lopes2021-07-06T09:30:28Z2021-022021-02-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/120564enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:02:29Zoai:run.unl.pt:10362/120564Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:44:13.422405Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Applicability of Multispectral Imagery for Detection of Prescribed Fires and Rekindling |
title |
Applicability of Multispectral Imagery for Detection of Prescribed Fires and Rekindling |
spellingShingle |
Applicability of Multispectral Imagery for Detection of Prescribed Fires and Rekindling Eusébio, Pedro Lopes Forest Fires Deep Learning Convolutional Neural Network Computer Vision Multispectral Sensor Mask R-CNN Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática |
title_short |
Applicability of Multispectral Imagery for Detection of Prescribed Fires and Rekindling |
title_full |
Applicability of Multispectral Imagery for Detection of Prescribed Fires and Rekindling |
title_fullStr |
Applicability of Multispectral Imagery for Detection of Prescribed Fires and Rekindling |
title_full_unstemmed |
Applicability of Multispectral Imagery for Detection of Prescribed Fires and Rekindling |
title_sort |
Applicability of Multispectral Imagery for Detection of Prescribed Fires and Rekindling |
author |
Eusébio, Pedro Lopes |
author_facet |
Eusébio, Pedro Lopes |
author_role |
author |
dc.contributor.none.fl_str_mv |
Oliveira, José Marques, Francisco RUN |
dc.contributor.author.fl_str_mv |
Eusébio, Pedro Lopes |
dc.subject.por.fl_str_mv |
Forest Fires Deep Learning Convolutional Neural Network Computer Vision Multispectral Sensor Mask R-CNN Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática |
topic |
Forest Fires Deep Learning Convolutional Neural Network Computer Vision Multispectral Sensor Mask R-CNN Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática |
description |
Forest fires are an increasingly relevant problem nowadays with the worsening of global warming’s most severe consequences. These fire occurrences, that can cause immense damage to forest ecosystems and have a great negative impact in peoples lives,begin often with rekindles. These problems can be very difficult to tackle, needing to involve a lot of people to surveil the areas at risk. A system capable of executing this surveillance protocol and alerting the fire fighting authorities of fire and possible rekindle occurrences would be extremely beneficial in these scenarios.A system aiming to achieve this goal is being implemented, composed of an UAV equipped with a multispectral camera, capturing aerial images of these areas. This dissertation presents a fire detection model to be used in prescribed fires and rekindling situations, identifying fire instances within the captured images. It makes use of the camera’s various spectral bands to highlight the areas at greatest risk and of deep learning technology to autonomously recognise these areas. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-07-06T09:30:28Z 2021-02 2021-02-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/120564 |
url |
http://hdl.handle.net/10362/120564 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138050359427072 |