Applicability of Multispectral Imagery for Detection of Prescribed Fires and Rekindling

Detalhes bibliográficos
Autor(a) principal: Eusébio, Pedro Lopes
Data de Publicação: 2021
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10362/120564
Resumo: Forest fires are an increasingly relevant problem nowadays with the worsening of global warming’s most severe consequences. These fire occurrences, that can cause immense damage to forest ecosystems and have a great negative impact in peoples lives,begin often with rekindles. These problems can be very difficult to tackle, needing to involve a lot of people to surveil the areas at risk. A system capable of executing this surveillance protocol and alerting the fire fighting authorities of fire and possible rekindle occurrences would be extremely beneficial in these scenarios.A system aiming to achieve this goal is being implemented, composed of an UAV equipped with a multispectral camera, capturing aerial images of these areas. This dissertation presents a fire detection model to be used in prescribed fires and rekindling situations, identifying fire instances within the captured images. It makes use of the camera’s various spectral bands to highlight the areas at greatest risk and of deep learning technology to autonomously recognise these areas.
id RCAP_b7e70da6ca2f60f96d7cee784efb1a9f
oai_identifier_str oai:run.unl.pt:10362/120564
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Applicability of Multispectral Imagery for Detection of Prescribed Fires and RekindlingForest FiresDeep LearningConvolutional Neural NetworkComputer VisionMultispectral SensorMask R-CNNDomínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e InformáticaForest fires are an increasingly relevant problem nowadays with the worsening of global warming’s most severe consequences. These fire occurrences, that can cause immense damage to forest ecosystems and have a great negative impact in peoples lives,begin often with rekindles. These problems can be very difficult to tackle, needing to involve a lot of people to surveil the areas at risk. A system capable of executing this surveillance protocol and alerting the fire fighting authorities of fire and possible rekindle occurrences would be extremely beneficial in these scenarios.A system aiming to achieve this goal is being implemented, composed of an UAV equipped with a multispectral camera, capturing aerial images of these areas. This dissertation presents a fire detection model to be used in prescribed fires and rekindling situations, identifying fire instances within the captured images. It makes use of the camera’s various spectral bands to highlight the areas at greatest risk and of deep learning technology to autonomously recognise these areas.Incêndios florestais são um problema cada vez mais relevante nos dias de hoje com o agravamento das consequências mais graves do aquecimento global. Estas ocorrências,que podem causar imensos danos aos ecossistemas florestais e ter um grande impacto negativo na vida das pessoas, são muitas vezes iniciadas por reacendimentos. Estes problemas podem ser muito difíceis de combater, necessitando de envolver muitas pessoas para vigiar as áreas de risco. Um sistema capaz de executar este protocolo de vigilância e alertar as autoridades de combate a incêndio sobre fogos e possíveis reacendimentos seria extremamente benéfico nestes cenários.Para alcançar este objetivo, está a ser implementado um sistema composto por um UAV, equipado com uma câmera multiespectral, que irá capturar imagens aéreas dessas áreas. Esta dissertação apresenta um modelo de detecção de incêndios para ser utilizado em situações de fogos controlados e reacendimentos, identificando ocorrências de fogo nas imagens capturadas. Faz uso das várias bandas espectrais da câmera para destacar as áreas de maior risco e de tecnologia de aprendizagem automática para reconhecer essas áreas de forma autônoma.Oliveira, JoséMarques, FranciscoRUNEusébio, Pedro Lopes2021-07-06T09:30:28Z2021-022021-02-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/120564enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:02:29Zoai:run.unl.pt:10362/120564Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:44:13.422405Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Applicability of Multispectral Imagery for Detection of Prescribed Fires and Rekindling
title Applicability of Multispectral Imagery for Detection of Prescribed Fires and Rekindling
spellingShingle Applicability of Multispectral Imagery for Detection of Prescribed Fires and Rekindling
Eusébio, Pedro Lopes
Forest Fires
Deep Learning
Convolutional Neural Network
Computer Vision
Multispectral Sensor
Mask R-CNN
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
title_short Applicability of Multispectral Imagery for Detection of Prescribed Fires and Rekindling
title_full Applicability of Multispectral Imagery for Detection of Prescribed Fires and Rekindling
title_fullStr Applicability of Multispectral Imagery for Detection of Prescribed Fires and Rekindling
title_full_unstemmed Applicability of Multispectral Imagery for Detection of Prescribed Fires and Rekindling
title_sort Applicability of Multispectral Imagery for Detection of Prescribed Fires and Rekindling
author Eusébio, Pedro Lopes
author_facet Eusébio, Pedro Lopes
author_role author
dc.contributor.none.fl_str_mv Oliveira, José
Marques, Francisco
RUN
dc.contributor.author.fl_str_mv Eusébio, Pedro Lopes
dc.subject.por.fl_str_mv Forest Fires
Deep Learning
Convolutional Neural Network
Computer Vision
Multispectral Sensor
Mask R-CNN
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
topic Forest Fires
Deep Learning
Convolutional Neural Network
Computer Vision
Multispectral Sensor
Mask R-CNN
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
description Forest fires are an increasingly relevant problem nowadays with the worsening of global warming’s most severe consequences. These fire occurrences, that can cause immense damage to forest ecosystems and have a great negative impact in peoples lives,begin often with rekindles. These problems can be very difficult to tackle, needing to involve a lot of people to surveil the areas at risk. A system capable of executing this surveillance protocol and alerting the fire fighting authorities of fire and possible rekindle occurrences would be extremely beneficial in these scenarios.A system aiming to achieve this goal is being implemented, composed of an UAV equipped with a multispectral camera, capturing aerial images of these areas. This dissertation presents a fire detection model to be used in prescribed fires and rekindling situations, identifying fire instances within the captured images. It makes use of the camera’s various spectral bands to highlight the areas at greatest risk and of deep learning technology to autonomously recognise these areas.
publishDate 2021
dc.date.none.fl_str_mv 2021-07-06T09:30:28Z
2021-02
2021-02-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/120564
url http://hdl.handle.net/10362/120564
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799138050359427072