Bayesian estimation of inefficiency heterogeneity in stochastic frontier models

Detalhes bibliográficos
Autor(a) principal: Galán, J. E.
Data de Publicação: 2014
Outros Autores: Veiga, H., Wiper, M. P.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://link.springer.com/article/10.1007/s11123-013-0377-4#page-1
https://ciencia.iscte-iul.pt/public/pub/id/16457
http://hdl.handle.net/10071/8060
Resumo: Estimation of the one sided error component in stochastic frontier models may erroneously attribute firm characteristics to inefficiency if heterogeneity is unaccounted for. However, unobserved inefficiency heterogeneity has been little explored. In this work, we propose to capture it through a random parameter which may affect the location, scale, or both parameters of a truncated normal inefficiency distribution using a Bayesian approach. Our findings using two real data sets, suggest that the inclusion of a random parameter in the inefficiency distribution is able to capture latent heterogeneity and can be used to validate the suitability of observed covariates to distinguish heterogeneity from inefficiency. Relevant effects are also found on separating and shrinking individual posterior efficiency distributions when heterogeneity affects the location and scale parameters of the one-sided error distribution, and consequently affecting the estimated mean efficiency scores and rankings. In particular, including heterogeneity simultaneously in both parameters of the inefficiency distribution in models that satisfy the scaling property leads to a decrease in the uncertainty around the mean scores and less overlapping of the posterior efficiency distributions, which provides both more reliable efficiency scores and rankings.
id RCAP_b908ed02a1e11198000aef73655e09a8
oai_identifier_str oai:repositorio.iscte-iul.pt:10071/8060
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Bayesian estimation of inefficiency heterogeneity in stochastic frontier modelsStochastic Frontier ModelsEfficiencyUnobserved HeterogeneityBayesian inferenceEstimation of the one sided error component in stochastic frontier models may erroneously attribute firm characteristics to inefficiency if heterogeneity is unaccounted for. However, unobserved inefficiency heterogeneity has been little explored. In this work, we propose to capture it through a random parameter which may affect the location, scale, or both parameters of a truncated normal inefficiency distribution using a Bayesian approach. Our findings using two real data sets, suggest that the inclusion of a random parameter in the inefficiency distribution is able to capture latent heterogeneity and can be used to validate the suitability of observed covariates to distinguish heterogeneity from inefficiency. Relevant effects are also found on separating and shrinking individual posterior efficiency distributions when heterogeneity affects the location and scale parameters of the one-sided error distribution, and consequently affecting the estimated mean efficiency scores and rankings. In particular, including heterogeneity simultaneously in both parameters of the inefficiency distribution in models that satisfy the scaling property leads to a decrease in the uncertainty around the mean scores and less overlapping of the posterior efficiency distributions, which provides both more reliable efficiency scores and rankings.Springer2014-12-10T12:43:58Z2014-01-01T00:00:00Z20142014-12-10T12:41:45Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://link.springer.com/article/10.1007/s11123-013-0377-4#page-1https://ciencia.iscte-iul.pt/public/pub/id/16457http://hdl.handle.net/10071/8060eng0895-562XGalán, J. E.Veiga, H.Wiper, M. P.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-07-07T02:37:44Zoai:repositorio.iscte-iul.pt:10071/8060Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-07-07T02:37:44Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Bayesian estimation of inefficiency heterogeneity in stochastic frontier models
title Bayesian estimation of inefficiency heterogeneity in stochastic frontier models
spellingShingle Bayesian estimation of inefficiency heterogeneity in stochastic frontier models
Galán, J. E.
Stochastic Frontier Models
Efficiency
Unobserved Heterogeneity
Bayesian inference
title_short Bayesian estimation of inefficiency heterogeneity in stochastic frontier models
title_full Bayesian estimation of inefficiency heterogeneity in stochastic frontier models
title_fullStr Bayesian estimation of inefficiency heterogeneity in stochastic frontier models
title_full_unstemmed Bayesian estimation of inefficiency heterogeneity in stochastic frontier models
title_sort Bayesian estimation of inefficiency heterogeneity in stochastic frontier models
author Galán, J. E.
author_facet Galán, J. E.
Veiga, H.
Wiper, M. P.
author_role author
author2 Veiga, H.
Wiper, M. P.
author2_role author
author
dc.contributor.author.fl_str_mv Galán, J. E.
Veiga, H.
Wiper, M. P.
dc.subject.por.fl_str_mv Stochastic Frontier Models
Efficiency
Unobserved Heterogeneity
Bayesian inference
topic Stochastic Frontier Models
Efficiency
Unobserved Heterogeneity
Bayesian inference
description Estimation of the one sided error component in stochastic frontier models may erroneously attribute firm characteristics to inefficiency if heterogeneity is unaccounted for. However, unobserved inefficiency heterogeneity has been little explored. In this work, we propose to capture it through a random parameter which may affect the location, scale, or both parameters of a truncated normal inefficiency distribution using a Bayesian approach. Our findings using two real data sets, suggest that the inclusion of a random parameter in the inefficiency distribution is able to capture latent heterogeneity and can be used to validate the suitability of observed covariates to distinguish heterogeneity from inefficiency. Relevant effects are also found on separating and shrinking individual posterior efficiency distributions when heterogeneity affects the location and scale parameters of the one-sided error distribution, and consequently affecting the estimated mean efficiency scores and rankings. In particular, including heterogeneity simultaneously in both parameters of the inefficiency distribution in models that satisfy the scaling property leads to a decrease in the uncertainty around the mean scores and less overlapping of the posterior efficiency distributions, which provides both more reliable efficiency scores and rankings.
publishDate 2014
dc.date.none.fl_str_mv 2014-12-10T12:43:58Z
2014-01-01T00:00:00Z
2014
2014-12-10T12:41:45Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://link.springer.com/article/10.1007/s11123-013-0377-4#page-1
https://ciencia.iscte-iul.pt/public/pub/id/16457
http://hdl.handle.net/10071/8060
url http://link.springer.com/article/10.1007/s11123-013-0377-4#page-1
https://ciencia.iscte-iul.pt/public/pub/id/16457
http://hdl.handle.net/10071/8060
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0895-562X
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv mluisa.alvim@gmail.com
_version_ 1817546279369048064