Bayesian estimation of inefficiency heterogeneity in stochastic frontier models
Autor(a) principal: | |
---|---|
Data de Publicação: | 2014 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://link.springer.com/article/10.1007/s11123-013-0377-4#page-1 https://ciencia.iscte-iul.pt/public/pub/id/16457 http://hdl.handle.net/10071/8060 |
Resumo: | Estimation of the one sided error component in stochastic frontier models may erroneously attribute firm characteristics to inefficiency if heterogeneity is unaccounted for. However, unobserved inefficiency heterogeneity has been little explored. In this work, we propose to capture it through a random parameter which may affect the location, scale, or both parameters of a truncated normal inefficiency distribution using a Bayesian approach. Our findings using two real data sets, suggest that the inclusion of a random parameter in the inefficiency distribution is able to capture latent heterogeneity and can be used to validate the suitability of observed covariates to distinguish heterogeneity from inefficiency. Relevant effects are also found on separating and shrinking individual posterior efficiency distributions when heterogeneity affects the location and scale parameters of the one-sided error distribution, and consequently affecting the estimated mean efficiency scores and rankings. In particular, including heterogeneity simultaneously in both parameters of the inefficiency distribution in models that satisfy the scaling property leads to a decrease in the uncertainty around the mean scores and less overlapping of the posterior efficiency distributions, which provides both more reliable efficiency scores and rankings. |
id |
RCAP_b908ed02a1e11198000aef73655e09a8 |
---|---|
oai_identifier_str |
oai:repositorio.iscte-iul.pt:10071/8060 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Bayesian estimation of inefficiency heterogeneity in stochastic frontier modelsStochastic Frontier ModelsEfficiencyUnobserved HeterogeneityBayesian inferenceEstimation of the one sided error component in stochastic frontier models may erroneously attribute firm characteristics to inefficiency if heterogeneity is unaccounted for. However, unobserved inefficiency heterogeneity has been little explored. In this work, we propose to capture it through a random parameter which may affect the location, scale, or both parameters of a truncated normal inefficiency distribution using a Bayesian approach. Our findings using two real data sets, suggest that the inclusion of a random parameter in the inefficiency distribution is able to capture latent heterogeneity and can be used to validate the suitability of observed covariates to distinguish heterogeneity from inefficiency. Relevant effects are also found on separating and shrinking individual posterior efficiency distributions when heterogeneity affects the location and scale parameters of the one-sided error distribution, and consequently affecting the estimated mean efficiency scores and rankings. In particular, including heterogeneity simultaneously in both parameters of the inefficiency distribution in models that satisfy the scaling property leads to a decrease in the uncertainty around the mean scores and less overlapping of the posterior efficiency distributions, which provides both more reliable efficiency scores and rankings.Springer2014-12-10T12:43:58Z2014-01-01T00:00:00Z20142014-12-10T12:41:45Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://link.springer.com/article/10.1007/s11123-013-0377-4#page-1https://ciencia.iscte-iul.pt/public/pub/id/16457http://hdl.handle.net/10071/8060eng0895-562XGalán, J. E.Veiga, H.Wiper, M. P.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-07-07T02:37:44Zoai:repositorio.iscte-iul.pt:10071/8060Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-07-07T02:37:44Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Bayesian estimation of inefficiency heterogeneity in stochastic frontier models |
title |
Bayesian estimation of inefficiency heterogeneity in stochastic frontier models |
spellingShingle |
Bayesian estimation of inefficiency heterogeneity in stochastic frontier models Galán, J. E. Stochastic Frontier Models Efficiency Unobserved Heterogeneity Bayesian inference |
title_short |
Bayesian estimation of inefficiency heterogeneity in stochastic frontier models |
title_full |
Bayesian estimation of inefficiency heterogeneity in stochastic frontier models |
title_fullStr |
Bayesian estimation of inefficiency heterogeneity in stochastic frontier models |
title_full_unstemmed |
Bayesian estimation of inefficiency heterogeneity in stochastic frontier models |
title_sort |
Bayesian estimation of inefficiency heterogeneity in stochastic frontier models |
author |
Galán, J. E. |
author_facet |
Galán, J. E. Veiga, H. Wiper, M. P. |
author_role |
author |
author2 |
Veiga, H. Wiper, M. P. |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Galán, J. E. Veiga, H. Wiper, M. P. |
dc.subject.por.fl_str_mv |
Stochastic Frontier Models Efficiency Unobserved Heterogeneity Bayesian inference |
topic |
Stochastic Frontier Models Efficiency Unobserved Heterogeneity Bayesian inference |
description |
Estimation of the one sided error component in stochastic frontier models may erroneously attribute firm characteristics to inefficiency if heterogeneity is unaccounted for. However, unobserved inefficiency heterogeneity has been little explored. In this work, we propose to capture it through a random parameter which may affect the location, scale, or both parameters of a truncated normal inefficiency distribution using a Bayesian approach. Our findings using two real data sets, suggest that the inclusion of a random parameter in the inefficiency distribution is able to capture latent heterogeneity and can be used to validate the suitability of observed covariates to distinguish heterogeneity from inefficiency. Relevant effects are also found on separating and shrinking individual posterior efficiency distributions when heterogeneity affects the location and scale parameters of the one-sided error distribution, and consequently affecting the estimated mean efficiency scores and rankings. In particular, including heterogeneity simultaneously in both parameters of the inefficiency distribution in models that satisfy the scaling property leads to a decrease in the uncertainty around the mean scores and less overlapping of the posterior efficiency distributions, which provides both more reliable efficiency scores and rankings. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-12-10T12:43:58Z 2014-01-01T00:00:00Z 2014 2014-12-10T12:41:45Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://link.springer.com/article/10.1007/s11123-013-0377-4#page-1 https://ciencia.iscte-iul.pt/public/pub/id/16457 http://hdl.handle.net/10071/8060 |
url |
http://link.springer.com/article/10.1007/s11123-013-0377-4#page-1 https://ciencia.iscte-iul.pt/public/pub/id/16457 http://hdl.handle.net/10071/8060 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0895-562X |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
mluisa.alvim@gmail.com |
_version_ |
1817546279369048064 |