IoT-based monitoring platform for indoor thermal comfort data collection
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/29446 |
Resumo: | Considering the noticeable climatic changes from past years, a general interest in finding solutions to reduce the environmental footprint has been growing. Among the major sources of energy consumption in domestic buildings, climate control is placed at top positions. In order to achieve a balance between the energy consumption levels and the occupants’ thermal comfort, several studies have been conducted all over the world regarding users’ behavior and their thermal comfort perception. It is within this scope that this dissertation addresses comfort monitoring. The study proposed in this project focuses on retrieving thermal comfort data based on the Portuguese families lifestyle and the Mediterranean climate. This dissertation aims to collect a good quality dataset that can be later analysed in order to extract useful information about how to develop effective solutions that are able to reduce the energy consumption levels without compromising the thermal comfort levels that householders are used to. In order to collect the dataset, certain long-term indoor measurements were collected, such as temperature, humidity and motion detection, through Zig- Bee sensors. These measurements were sent and stored in an open-source IoT platform, responsible for monitoring the data collection process and generating alerts when it detects a failure that cannot be solved without user intervention. The measurements are sent from the sensors to the IoT platform through a gateway, which acts as an intermediary for protocol translation and also implements monitoring functionalities. As a result of the study, data from 15 houses were collected during, approximately, 8 months, but the study is still running. The resulting dataset has undergone preliminary analysis, for the quality obtained and the developed data collection process point of view. |
id |
RCAP_b930d943703da1221f677a56f7e99a35 |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/29446 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
IoT-based monitoring platform for indoor thermal comfort data collectionDatasetThermal comfortIoTDevice monitoringSensor data gatheringAlert systemConsidering the noticeable climatic changes from past years, a general interest in finding solutions to reduce the environmental footprint has been growing. Among the major sources of energy consumption in domestic buildings, climate control is placed at top positions. In order to achieve a balance between the energy consumption levels and the occupants’ thermal comfort, several studies have been conducted all over the world regarding users’ behavior and their thermal comfort perception. It is within this scope that this dissertation addresses comfort monitoring. The study proposed in this project focuses on retrieving thermal comfort data based on the Portuguese families lifestyle and the Mediterranean climate. This dissertation aims to collect a good quality dataset that can be later analysed in order to extract useful information about how to develop effective solutions that are able to reduce the energy consumption levels without compromising the thermal comfort levels that householders are used to. In order to collect the dataset, certain long-term indoor measurements were collected, such as temperature, humidity and motion detection, through Zig- Bee sensors. These measurements were sent and stored in an open-source IoT platform, responsible for monitoring the data collection process and generating alerts when it detects a failure that cannot be solved without user intervention. The measurements are sent from the sensors to the IoT platform through a gateway, which acts as an intermediary for protocol translation and also implements monitoring functionalities. As a result of the study, data from 15 houses were collected during, approximately, 8 months, but the study is still running. The resulting dataset has undergone preliminary analysis, for the quality obtained and the developed data collection process point of view.Estima-se que, atualmente, grande parte da energia produzida seja consumida por edifícios do setor residencial para efeitos de controlo climático. Com o objetivo de desenvolver soluções de forma a reduzir o consumo de energia associado ao controlo climático sem comprometer o conforto dos residentes, vários estudos têm sido desenvolvidos a nível mundial relacionados com o comportamento dos habitantes e o seu nível de conforto. É nesse âmbito que se insere esta dissertação. Esta dissertação propõe-se a recolher um dataset sobre níveis de conforto térmico em ambiente doméstico, com base no clima mediterrânico e na rotina típica das famílias portuguesas. Mais tarde, esse dataset pode ser estudado de forma a extrair informação útil sobre que tipo de soluções se podem desenvolver com o objetivo de reduzir o consumo energético enquanto se mantêm os níveis de conforto já praticados. Para recolher esse dataset, determinados parâmetros do ambiente interior das casas foram recolhidos durante um longo período de tempo através de sensores ZigBee, como, por exemplo, temperatura, humidade e deteção de movimento. Essas medições foram enviadas e guardadas numa plataforma IoT, construída com base em software open-source, que monitoriza o processo de recolha dos dados e gera alertas quando deteta uma falha que não possa ser corrigida sem intervenção manual. O envio das leituras dos sensores ZigBee para a plataforma IoT é feito através de uma gateway, que age como um intermediário na comunicação e implementa funcionalidades necessárias para o processo de monitorização. O estudo permitiu a recolha de informação em 15 casas, durante, aproximadamente, 8 meses, e ainda se encontra a decorrer. Foi ainda realizada uma análise inicial sobre os dados recolhidos, do ponto de vista da qualidade do dataset obtido e do processo de recolha desenvolvido.2020-10-14T14:38:51Z2019-12-01T00:00:00Z2019-12info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/29446engAlmeida, Ana Laura Costainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:56:57Zoai:ria.ua.pt:10773/29446Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:01:47.140729Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
IoT-based monitoring platform for indoor thermal comfort data collection |
title |
IoT-based monitoring platform for indoor thermal comfort data collection |
spellingShingle |
IoT-based monitoring platform for indoor thermal comfort data collection Almeida, Ana Laura Costa Dataset Thermal comfort IoT Device monitoring Sensor data gathering Alert system |
title_short |
IoT-based monitoring platform for indoor thermal comfort data collection |
title_full |
IoT-based monitoring platform for indoor thermal comfort data collection |
title_fullStr |
IoT-based monitoring platform for indoor thermal comfort data collection |
title_full_unstemmed |
IoT-based monitoring platform for indoor thermal comfort data collection |
title_sort |
IoT-based monitoring platform for indoor thermal comfort data collection |
author |
Almeida, Ana Laura Costa |
author_facet |
Almeida, Ana Laura Costa |
author_role |
author |
dc.contributor.author.fl_str_mv |
Almeida, Ana Laura Costa |
dc.subject.por.fl_str_mv |
Dataset Thermal comfort IoT Device monitoring Sensor data gathering Alert system |
topic |
Dataset Thermal comfort IoT Device monitoring Sensor data gathering Alert system |
description |
Considering the noticeable climatic changes from past years, a general interest in finding solutions to reduce the environmental footprint has been growing. Among the major sources of energy consumption in domestic buildings, climate control is placed at top positions. In order to achieve a balance between the energy consumption levels and the occupants’ thermal comfort, several studies have been conducted all over the world regarding users’ behavior and their thermal comfort perception. It is within this scope that this dissertation addresses comfort monitoring. The study proposed in this project focuses on retrieving thermal comfort data based on the Portuguese families lifestyle and the Mediterranean climate. This dissertation aims to collect a good quality dataset that can be later analysed in order to extract useful information about how to develop effective solutions that are able to reduce the energy consumption levels without compromising the thermal comfort levels that householders are used to. In order to collect the dataset, certain long-term indoor measurements were collected, such as temperature, humidity and motion detection, through Zig- Bee sensors. These measurements were sent and stored in an open-source IoT platform, responsible for monitoring the data collection process and generating alerts when it detects a failure that cannot be solved without user intervention. The measurements are sent from the sensors to the IoT platform through a gateway, which acts as an intermediary for protocol translation and also implements monitoring functionalities. As a result of the study, data from 15 houses were collected during, approximately, 8 months, but the study is still running. The resulting dataset has undergone preliminary analysis, for the quality obtained and the developed data collection process point of view. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-12-01T00:00:00Z 2019-12 2020-10-14T14:38:51Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/29446 |
url |
http://hdl.handle.net/10773/29446 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137673408937984 |