Formation energies of metallic voids, edges, and steps: Generalized liquid-drop model
Autor(a) principal: | |
---|---|
Data de Publicação: | 1993 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10316/12331 https://doi.org/10.1103/PhysRevB.47.16460 |
Resumo: | The void formation energy is the work needed to create the curved surface of a void. For a spherical hole in a homogeneous metal (jellium or stabilized jellium), the void formation energy is calculated for large radii from the liquid-drop model (surface plus curvature terms), and for small radii from perturbation theory. A Padé approximation is proposed to link these limits. For radii greater than or equal to that of a single atom or monovacancy, the liquid-drop model is found to be usefully accurate. Moreover, the predicted monovacancy formation energies for stabilized jellium agree reasonably well with those measured for simple metals. These results suggest a generalized liquid-drop model of possible high accuracy and explanatory value for the energetics of stable metal surfaces curved on the atomic scale (crystal faces, edges, corners, etc.). The bending energy per unit length for an edge at angle θ is estimated to be γ(π-θ)/4, where γ is the intrinsic curvature energy. The step energy is estimated as (n-2+π/2)σd, where σ is the intrinsic surface energy, n≥1 is the number of atomic layers at the step, and d is the layer height |
id |
RCAP_b970948efd5e798648aa7147685fcd09 |
---|---|
oai_identifier_str |
oai:estudogeral.uc.pt:10316/12331 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Formation energies of metallic voids, edges, and steps: Generalized liquid-drop modelThe void formation energy is the work needed to create the curved surface of a void. For a spherical hole in a homogeneous metal (jellium or stabilized jellium), the void formation energy is calculated for large radii from the liquid-drop model (surface plus curvature terms), and for small radii from perturbation theory. A Padé approximation is proposed to link these limits. For radii greater than or equal to that of a single atom or monovacancy, the liquid-drop model is found to be usefully accurate. Moreover, the predicted monovacancy formation energies for stabilized jellium agree reasonably well with those measured for simple metals. These results suggest a generalized liquid-drop model of possible high accuracy and explanatory value for the energetics of stable metal surfaces curved on the atomic scale (crystal faces, edges, corners, etc.). The bending energy per unit length for an edge at angle θ is estimated to be γ(π-θ)/4, where γ is the intrinsic curvature energy. The step energy is estimated as (n-2+π/2)σd, where σ is the intrinsic surface energy, n≥1 is the number of atomic layers at the step, and d is the layer heightThe American Physical Society1993-06-15info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10316/12331http://hdl.handle.net/10316/12331https://doi.org/10.1103/PhysRevB.47.16460engPhysical Review B. 47:24 (1993) 16460–164630163-1829Perdew, John P.Ziesche, PaulFiolhais, Carlosinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2020-11-06T17:00:06Zoai:estudogeral.uc.pt:10316/12331Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:59:53.299515Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Formation energies of metallic voids, edges, and steps: Generalized liquid-drop model |
title |
Formation energies of metallic voids, edges, and steps: Generalized liquid-drop model |
spellingShingle |
Formation energies of metallic voids, edges, and steps: Generalized liquid-drop model Perdew, John P. |
title_short |
Formation energies of metallic voids, edges, and steps: Generalized liquid-drop model |
title_full |
Formation energies of metallic voids, edges, and steps: Generalized liquid-drop model |
title_fullStr |
Formation energies of metallic voids, edges, and steps: Generalized liquid-drop model |
title_full_unstemmed |
Formation energies of metallic voids, edges, and steps: Generalized liquid-drop model |
title_sort |
Formation energies of metallic voids, edges, and steps: Generalized liquid-drop model |
author |
Perdew, John P. |
author_facet |
Perdew, John P. Ziesche, Paul Fiolhais, Carlos |
author_role |
author |
author2 |
Ziesche, Paul Fiolhais, Carlos |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Perdew, John P. Ziesche, Paul Fiolhais, Carlos |
description |
The void formation energy is the work needed to create the curved surface of a void. For a spherical hole in a homogeneous metal (jellium or stabilized jellium), the void formation energy is calculated for large radii from the liquid-drop model (surface plus curvature terms), and for small radii from perturbation theory. A Padé approximation is proposed to link these limits. For radii greater than or equal to that of a single atom or monovacancy, the liquid-drop model is found to be usefully accurate. Moreover, the predicted monovacancy formation energies for stabilized jellium agree reasonably well with those measured for simple metals. These results suggest a generalized liquid-drop model of possible high accuracy and explanatory value for the energetics of stable metal surfaces curved on the atomic scale (crystal faces, edges, corners, etc.). The bending energy per unit length for an edge at angle θ is estimated to be γ(π-θ)/4, where γ is the intrinsic curvature energy. The step energy is estimated as (n-2+π/2)σd, where σ is the intrinsic surface energy, n≥1 is the number of atomic layers at the step, and d is the layer height |
publishDate |
1993 |
dc.date.none.fl_str_mv |
1993-06-15 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10316/12331 http://hdl.handle.net/10316/12331 https://doi.org/10.1103/PhysRevB.47.16460 |
url |
http://hdl.handle.net/10316/12331 https://doi.org/10.1103/PhysRevB.47.16460 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Physical Review B. 47:24 (1993) 16460–16463 0163-1829 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
The American Physical Society |
publisher.none.fl_str_mv |
The American Physical Society |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799133889028947968 |