Formation energies of metallic voids, edges, and steps: Generalized liquid-drop model

Detalhes bibliográficos
Autor(a) principal: Perdew, John P.
Data de Publicação: 1993
Outros Autores: Ziesche, Paul, Fiolhais, Carlos
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10316/12331
https://doi.org/10.1103/PhysRevB.47.16460
Resumo: The void formation energy is the work needed to create the curved surface of a void. For a spherical hole in a homogeneous metal (jellium or stabilized jellium), the void formation energy is calculated for large radii from the liquid-drop model (surface plus curvature terms), and for small radii from perturbation theory. A Padé approximation is proposed to link these limits. For radii greater than or equal to that of a single atom or monovacancy, the liquid-drop model is found to be usefully accurate. Moreover, the predicted monovacancy formation energies for stabilized jellium agree reasonably well with those measured for simple metals. These results suggest a generalized liquid-drop model of possible high accuracy and explanatory value for the energetics of stable metal surfaces curved on the atomic scale (crystal faces, edges, corners, etc.). The bending energy per unit length for an edge at angle θ is estimated to be γ(π-θ)/4, where γ is the intrinsic curvature energy. The step energy is estimated as (n-2+π/2)σd, where σ is the intrinsic surface energy, n≥1 is the number of atomic layers at the step, and d is the layer height
id RCAP_b970948efd5e798648aa7147685fcd09
oai_identifier_str oai:estudogeral.uc.pt:10316/12331
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Formation energies of metallic voids, edges, and steps: Generalized liquid-drop modelThe void formation energy is the work needed to create the curved surface of a void. For a spherical hole in a homogeneous metal (jellium or stabilized jellium), the void formation energy is calculated for large radii from the liquid-drop model (surface plus curvature terms), and for small radii from perturbation theory. A Padé approximation is proposed to link these limits. For radii greater than or equal to that of a single atom or monovacancy, the liquid-drop model is found to be usefully accurate. Moreover, the predicted monovacancy formation energies for stabilized jellium agree reasonably well with those measured for simple metals. These results suggest a generalized liquid-drop model of possible high accuracy and explanatory value for the energetics of stable metal surfaces curved on the atomic scale (crystal faces, edges, corners, etc.). The bending energy per unit length for an edge at angle θ is estimated to be γ(π-θ)/4, where γ is the intrinsic curvature energy. The step energy is estimated as (n-2+π/2)σd, where σ is the intrinsic surface energy, n≥1 is the number of atomic layers at the step, and d is the layer heightThe American Physical Society1993-06-15info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10316/12331http://hdl.handle.net/10316/12331https://doi.org/10.1103/PhysRevB.47.16460engPhysical Review B. 47:24 (1993) 16460–164630163-1829Perdew, John P.Ziesche, PaulFiolhais, Carlosinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2020-11-06T17:00:06Zoai:estudogeral.uc.pt:10316/12331Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:59:53.299515Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Formation energies of metallic voids, edges, and steps: Generalized liquid-drop model
title Formation energies of metallic voids, edges, and steps: Generalized liquid-drop model
spellingShingle Formation energies of metallic voids, edges, and steps: Generalized liquid-drop model
Perdew, John P.
title_short Formation energies of metallic voids, edges, and steps: Generalized liquid-drop model
title_full Formation energies of metallic voids, edges, and steps: Generalized liquid-drop model
title_fullStr Formation energies of metallic voids, edges, and steps: Generalized liquid-drop model
title_full_unstemmed Formation energies of metallic voids, edges, and steps: Generalized liquid-drop model
title_sort Formation energies of metallic voids, edges, and steps: Generalized liquid-drop model
author Perdew, John P.
author_facet Perdew, John P.
Ziesche, Paul
Fiolhais, Carlos
author_role author
author2 Ziesche, Paul
Fiolhais, Carlos
author2_role author
author
dc.contributor.author.fl_str_mv Perdew, John P.
Ziesche, Paul
Fiolhais, Carlos
description The void formation energy is the work needed to create the curved surface of a void. For a spherical hole in a homogeneous metal (jellium or stabilized jellium), the void formation energy is calculated for large radii from the liquid-drop model (surface plus curvature terms), and for small radii from perturbation theory. A Padé approximation is proposed to link these limits. For radii greater than or equal to that of a single atom or monovacancy, the liquid-drop model is found to be usefully accurate. Moreover, the predicted monovacancy formation energies for stabilized jellium agree reasonably well with those measured for simple metals. These results suggest a generalized liquid-drop model of possible high accuracy and explanatory value for the energetics of stable metal surfaces curved on the atomic scale (crystal faces, edges, corners, etc.). The bending energy per unit length for an edge at angle θ is estimated to be γ(π-θ)/4, where γ is the intrinsic curvature energy. The step energy is estimated as (n-2+π/2)σd, where σ is the intrinsic surface energy, n≥1 is the number of atomic layers at the step, and d is the layer height
publishDate 1993
dc.date.none.fl_str_mv 1993-06-15
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10316/12331
http://hdl.handle.net/10316/12331
https://doi.org/10.1103/PhysRevB.47.16460
url http://hdl.handle.net/10316/12331
https://doi.org/10.1103/PhysRevB.47.16460
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Physical Review B. 47:24 (1993) 16460–16463
0163-1829
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv The American Physical Society
publisher.none.fl_str_mv The American Physical Society
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799133889028947968