Validation of fNIRS System as a Technique to Monitor Cognitive Workload
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/134615 |
Resumo: | CognitiveWorkload (CW) is a key factor in the human learning context. Knowing the optimal amount of CW is essential to maximise cognitive performance, emerging as an important variable in e-learning systems and Brain-Computer Interfaces (BCI) applications. Functional Near-Infrared Spectroscopy (fNIRS) has emerged as a promising avenue of brain discovery because of its easy setup and robust results. It is, in fact, along with Electroencephalography (EEG), an encouraging technique in the context of BCI. Brain- Computer Interfaces, by tracking the user’s cognitive state, are suitable for educational systems. Thus, this work sought to validate the fNIRS technique for monitoring different CW stages. For this purpose, we acquired the fNIRS and EEG signals when performing cognitive tasks, which included a progressive increase of difficulty and simulation of the learning process. We also used the breathing sensor and the participants’ facial expressions to assess their cognitive status. We found that both visual inspections of fNIRS signals and power spectral analysis of EEG bands are not sufficient for discriminating cognitive states, nor quantify CW. However, by applying machine learning (ML) algorithms, we were able to distinguish these states with mean accuracies of 79.8%, reaching a value of 100% in one specific case. Our findings provide evidence that fNIRS technique has the potential to monitor different levels of CW. Furthermore, our results suggest that this technique allied with the EEG and combined via ML algorithms is a promising tool to be used in the e-learning and BCI fields for its skill to discriminate and characterize cognitive states. |
id |
RCAP_b9fb9599d7650cdd7ca98fa1f8e3bae2 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/134615 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Validation of fNIRS System as a Technique to Monitor Cognitive Workloadcognitive workloadfNIRScognitive statesEEGmachine learningDomínio/Área Científica::Engenharia e Tecnologia::Outras Engenharias e TecnologiasCognitiveWorkload (CW) is a key factor in the human learning context. Knowing the optimal amount of CW is essential to maximise cognitive performance, emerging as an important variable in e-learning systems and Brain-Computer Interfaces (BCI) applications. Functional Near-Infrared Spectroscopy (fNIRS) has emerged as a promising avenue of brain discovery because of its easy setup and robust results. It is, in fact, along with Electroencephalography (EEG), an encouraging technique in the context of BCI. Brain- Computer Interfaces, by tracking the user’s cognitive state, are suitable for educational systems. Thus, this work sought to validate the fNIRS technique for monitoring different CW stages. For this purpose, we acquired the fNIRS and EEG signals when performing cognitive tasks, which included a progressive increase of difficulty and simulation of the learning process. We also used the breathing sensor and the participants’ facial expressions to assess their cognitive status. We found that both visual inspections of fNIRS signals and power spectral analysis of EEG bands are not sufficient for discriminating cognitive states, nor quantify CW. However, by applying machine learning (ML) algorithms, we were able to distinguish these states with mean accuracies of 79.8%, reaching a value of 100% in one specific case. Our findings provide evidence that fNIRS technique has the potential to monitor different levels of CW. Furthermore, our results suggest that this technique allied with the EEG and combined via ML algorithms is a promising tool to be used in the e-learning and BCI fields for its skill to discriminate and characterize cognitive states.O esforço cognitivo (CW) é um factor relevante no contexto da aprendizagem humana. Conhecer a quantidade óptima de CW é essencial para maximizar o desempenho cognitivo, surgindo como uma variável importante em sistemas de e-learning e aplicações de Interfaces Cérebro-Computador (BCI). A Espectroscopia Funcional de Infravermelho Próximo (fNIRS) emergiu como uma via de descoberta do cérebro devido à sua fácil configuração e resultados robustos. É, de facto, juntamente com a Electroencefalografia (EEG), uma técnica encorajadora no contexto de BCI. As interfaces cérebro-computador, ao monitorizar o estado cognitivo do utilizador, são adequadas para sistemas educativos. Assim, este trabalho procurou validar o sistema de fNIRS como uma técnica de monitorização de CW. Para este efeito, adquirimos os sinais fNIRS e EEG aquando da execução de tarefas cognitivas, que incluiram um aumento progressivo de dificuldade e simulação do processo de aprendizagem. Utilizámos, ainda, o sensor de respiração e as expressões faciais dos participantes para avaliar o seu estado cognitivo. Verificámos que tanto a inspeção visual dos sinais de fNIRS como a análise espectral dos sinais de EEG não são suficientes para discriminar estados cognitivos, nem para quantificar o CW. No entanto, aplicando algoritmos de machine learning (ML), fomos capazes de distinguir estes estados com exatidões médias de 79.8%, chegando a atingir o valor de 100% num caso específico. Os nossos resultados fornecem provas da prospecção da técnica fNIRS para supervisionar diferentes níveis de CW. Além disso, os nossos resultados sugerem que esta técnica aliada à de EEG e combinada via algoritmos ML é uma ferramenta promissora a ser utilizada nos campos do e-learning e de BCI, pela sua capacidade de discriminar e caracterizar estados cognitivos.Gamboa, HugoRUNSilveira, Inês Apolinário Pancada da2022-03-16T11:24:22Z2021-112021-11-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/134615enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:13:03Zoai:run.unl.pt:10362/134615Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:48:10.384853Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Validation of fNIRS System as a Technique to Monitor Cognitive Workload |
title |
Validation of fNIRS System as a Technique to Monitor Cognitive Workload |
spellingShingle |
Validation of fNIRS System as a Technique to Monitor Cognitive Workload Silveira, Inês Apolinário Pancada da cognitive workload fNIRS cognitive states EEG machine learning Domínio/Área Científica::Engenharia e Tecnologia::Outras Engenharias e Tecnologias |
title_short |
Validation of fNIRS System as a Technique to Monitor Cognitive Workload |
title_full |
Validation of fNIRS System as a Technique to Monitor Cognitive Workload |
title_fullStr |
Validation of fNIRS System as a Technique to Monitor Cognitive Workload |
title_full_unstemmed |
Validation of fNIRS System as a Technique to Monitor Cognitive Workload |
title_sort |
Validation of fNIRS System as a Technique to Monitor Cognitive Workload |
author |
Silveira, Inês Apolinário Pancada da |
author_facet |
Silveira, Inês Apolinário Pancada da |
author_role |
author |
dc.contributor.none.fl_str_mv |
Gamboa, Hugo RUN |
dc.contributor.author.fl_str_mv |
Silveira, Inês Apolinário Pancada da |
dc.subject.por.fl_str_mv |
cognitive workload fNIRS cognitive states EEG machine learning Domínio/Área Científica::Engenharia e Tecnologia::Outras Engenharias e Tecnologias |
topic |
cognitive workload fNIRS cognitive states EEG machine learning Domínio/Área Científica::Engenharia e Tecnologia::Outras Engenharias e Tecnologias |
description |
CognitiveWorkload (CW) is a key factor in the human learning context. Knowing the optimal amount of CW is essential to maximise cognitive performance, emerging as an important variable in e-learning systems and Brain-Computer Interfaces (BCI) applications. Functional Near-Infrared Spectroscopy (fNIRS) has emerged as a promising avenue of brain discovery because of its easy setup and robust results. It is, in fact, along with Electroencephalography (EEG), an encouraging technique in the context of BCI. Brain- Computer Interfaces, by tracking the user’s cognitive state, are suitable for educational systems. Thus, this work sought to validate the fNIRS technique for monitoring different CW stages. For this purpose, we acquired the fNIRS and EEG signals when performing cognitive tasks, which included a progressive increase of difficulty and simulation of the learning process. We also used the breathing sensor and the participants’ facial expressions to assess their cognitive status. We found that both visual inspections of fNIRS signals and power spectral analysis of EEG bands are not sufficient for discriminating cognitive states, nor quantify CW. However, by applying machine learning (ML) algorithms, we were able to distinguish these states with mean accuracies of 79.8%, reaching a value of 100% in one specific case. Our findings provide evidence that fNIRS technique has the potential to monitor different levels of CW. Furthermore, our results suggest that this technique allied with the EEG and combined via ML algorithms is a promising tool to be used in the e-learning and BCI fields for its skill to discriminate and characterize cognitive states. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-11 2021-11-01T00:00:00Z 2022-03-16T11:24:22Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/134615 |
url |
http://hdl.handle.net/10362/134615 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138083259547648 |