A particle swarm pattern search method for bound constrained global optimization

Detalhes bibliográficos
Autor(a) principal: Vaz, A.
Data de Publicação: 2007
Outros Autores: Vicente, Luís
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10316/7724
https://doi.org/10.1007/s10898-007-9133-5
Resumo: Abstract In this paper we develop, analyze, and test a new algorithm for the global minimization of a function subject to simple bounds without the use of derivatives. The underlying algorithm is a pattern search method, more specifically a coordinate search method, which guarantees convergence to stationary points from arbitrary starting points. In the optional search phase of pattern search we apply a particle swarm scheme to globally explore the possible nonconvexity of the objective function. Our extensive numerical experiments showed that the resulting algorithm is highly competitive with other global optimization methods also based on function values.
id RCAP_ba2fd5b1441fb7141fe8c53cdc2ec964
oai_identifier_str oai:estudogeral.uc.pt:10316/7724
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling A particle swarm pattern search method for bound constrained global optimizationAbstract In this paper we develop, analyze, and test a new algorithm for the global minimization of a function subject to simple bounds without the use of derivatives. The underlying algorithm is a pattern search method, more specifically a coordinate search method, which guarantees convergence to stationary points from arbitrary starting points. In the optional search phase of pattern search we apply a particle swarm scheme to globally explore the possible nonconvexity of the objective function. Our extensive numerical experiments showed that the resulting algorithm is highly competitive with other global optimization methods also based on function values.2007info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10316/7724http://hdl.handle.net/10316/7724https://doi.org/10.1007/s10898-007-9133-5engJournal of Global Optimization. 39:2 (2007) 197-219Vaz, A.Vicente, Luísinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2021-11-09T10:29:10Zoai:estudogeral.uc.pt:10316/7724Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T21:00:44.622100Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv A particle swarm pattern search method for bound constrained global optimization
title A particle swarm pattern search method for bound constrained global optimization
spellingShingle A particle swarm pattern search method for bound constrained global optimization
Vaz, A.
title_short A particle swarm pattern search method for bound constrained global optimization
title_full A particle swarm pattern search method for bound constrained global optimization
title_fullStr A particle swarm pattern search method for bound constrained global optimization
title_full_unstemmed A particle swarm pattern search method for bound constrained global optimization
title_sort A particle swarm pattern search method for bound constrained global optimization
author Vaz, A.
author_facet Vaz, A.
Vicente, Luís
author_role author
author2 Vicente, Luís
author2_role author
dc.contributor.author.fl_str_mv Vaz, A.
Vicente, Luís
description Abstract In this paper we develop, analyze, and test a new algorithm for the global minimization of a function subject to simple bounds without the use of derivatives. The underlying algorithm is a pattern search method, more specifically a coordinate search method, which guarantees convergence to stationary points from arbitrary starting points. In the optional search phase of pattern search we apply a particle swarm scheme to globally explore the possible nonconvexity of the objective function. Our extensive numerical experiments showed that the resulting algorithm is highly competitive with other global optimization methods also based on function values.
publishDate 2007
dc.date.none.fl_str_mv 2007
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10316/7724
http://hdl.handle.net/10316/7724
https://doi.org/10.1007/s10898-007-9133-5
url http://hdl.handle.net/10316/7724
https://doi.org/10.1007/s10898-007-9133-5
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Journal of Global Optimization. 39:2 (2007) 197-219
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799133897620979712