A particle swarm pattern search method for bound constrained global optimization
Autor(a) principal: | |
---|---|
Data de Publicação: | 2007 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10316/7724 https://doi.org/10.1007/s10898-007-9133-5 |
Resumo: | Abstract In this paper we develop, analyze, and test a new algorithm for the global minimization of a function subject to simple bounds without the use of derivatives. The underlying algorithm is a pattern search method, more specifically a coordinate search method, which guarantees convergence to stationary points from arbitrary starting points. In the optional search phase of pattern search we apply a particle swarm scheme to globally explore the possible nonconvexity of the objective function. Our extensive numerical experiments showed that the resulting algorithm is highly competitive with other global optimization methods also based on function values. |
id |
RCAP_ba2fd5b1441fb7141fe8c53cdc2ec964 |
---|---|
oai_identifier_str |
oai:estudogeral.uc.pt:10316/7724 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
A particle swarm pattern search method for bound constrained global optimizationAbstract In this paper we develop, analyze, and test a new algorithm for the global minimization of a function subject to simple bounds without the use of derivatives. The underlying algorithm is a pattern search method, more specifically a coordinate search method, which guarantees convergence to stationary points from arbitrary starting points. In the optional search phase of pattern search we apply a particle swarm scheme to globally explore the possible nonconvexity of the objective function. Our extensive numerical experiments showed that the resulting algorithm is highly competitive with other global optimization methods also based on function values.2007info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10316/7724http://hdl.handle.net/10316/7724https://doi.org/10.1007/s10898-007-9133-5engJournal of Global Optimization. 39:2 (2007) 197-219Vaz, A.Vicente, Luísinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2021-11-09T10:29:10Zoai:estudogeral.uc.pt:10316/7724Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T21:00:44.622100Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
A particle swarm pattern search method for bound constrained global optimization |
title |
A particle swarm pattern search method for bound constrained global optimization |
spellingShingle |
A particle swarm pattern search method for bound constrained global optimization Vaz, A. |
title_short |
A particle swarm pattern search method for bound constrained global optimization |
title_full |
A particle swarm pattern search method for bound constrained global optimization |
title_fullStr |
A particle swarm pattern search method for bound constrained global optimization |
title_full_unstemmed |
A particle swarm pattern search method for bound constrained global optimization |
title_sort |
A particle swarm pattern search method for bound constrained global optimization |
author |
Vaz, A. |
author_facet |
Vaz, A. Vicente, Luís |
author_role |
author |
author2 |
Vicente, Luís |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Vaz, A. Vicente, Luís |
description |
Abstract In this paper we develop, analyze, and test a new algorithm for the global minimization of a function subject to simple bounds without the use of derivatives. The underlying algorithm is a pattern search method, more specifically a coordinate search method, which guarantees convergence to stationary points from arbitrary starting points. In the optional search phase of pattern search we apply a particle swarm scheme to globally explore the possible nonconvexity of the objective function. Our extensive numerical experiments showed that the resulting algorithm is highly competitive with other global optimization methods also based on function values. |
publishDate |
2007 |
dc.date.none.fl_str_mv |
2007 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10316/7724 http://hdl.handle.net/10316/7724 https://doi.org/10.1007/s10898-007-9133-5 |
url |
http://hdl.handle.net/10316/7724 https://doi.org/10.1007/s10898-007-9133-5 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Journal of Global Optimization. 39:2 (2007) 197-219 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799133897620979712 |