Using machine learning algorithms to identify named entities in legal documents: a preliminary approach
Autor(a) principal: | |
---|---|
Data de Publicação: | 2011 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10174/4899 |
Resumo: | This paper deals with accuracy and performance of var- ious machine learning algorithms in the recognition and extraction of different types of named entities such as date, organization, reg- ulation laws and person. The experiment is based on 20 judicial decision documents from European Lex site. The obtained results were proposed for the selection of the best algorithm that selects appropriate maximum entities from the legal documents. To ver- ify the performance of algorithm, obtained data from the tagging entities were compared with manual work as reference. |
id |
RCAP_ba67fc84ddc0f4cfc4e7cfc26faadc55 |
---|---|
oai_identifier_str |
oai:dspace.uevora.pt:10174/4899 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Using machine learning algorithms to identify named entities in legal documents: a preliminary approachnamed entities recognitionmachine learningThis paper deals with accuracy and performance of var- ious machine learning algorithms in the recognition and extraction of different types of named entities such as date, organization, reg- ulation laws and person. The experiment is based on 20 judicial decision documents from European Lex site. The obtained results were proposed for the selection of the best algorithm that selects appropriate maximum entities from the legal documents. To ver- ify the performance of algorithm, obtained data from the tagging entities were compared with manual work as reference.Escola de Ciências e Tecnologia da Universidade de Évora2012-02-02T17:00:46Z2012-02-022011-11-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10174/4899http://hdl.handle.net/10174/4899engPrakash Poudyal, Luis Borrego e Paulo Quaresma. Using machine learning algorithms to identify named entities in legal documents: a preliminary approach. In JIUE'2011 - 2as Jornadas de Informática da Universidade de Évora. Évora, Portugal, pages 33-38. ISBN: 978-989-97060-2-6.prakash@di.uevora.ptluis.borrego@hotmail.pq@di.uevora.pt283Poudyal, PrakashBorrego, LuísQuaresma, Pauloinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-01-03T18:42:34Zoai:dspace.uevora.pt:10174/4899Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T00:59:45.160500Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Using machine learning algorithms to identify named entities in legal documents: a preliminary approach |
title |
Using machine learning algorithms to identify named entities in legal documents: a preliminary approach |
spellingShingle |
Using machine learning algorithms to identify named entities in legal documents: a preliminary approach Poudyal, Prakash named entities recognition machine learning |
title_short |
Using machine learning algorithms to identify named entities in legal documents: a preliminary approach |
title_full |
Using machine learning algorithms to identify named entities in legal documents: a preliminary approach |
title_fullStr |
Using machine learning algorithms to identify named entities in legal documents: a preliminary approach |
title_full_unstemmed |
Using machine learning algorithms to identify named entities in legal documents: a preliminary approach |
title_sort |
Using machine learning algorithms to identify named entities in legal documents: a preliminary approach |
author |
Poudyal, Prakash |
author_facet |
Poudyal, Prakash Borrego, Luís Quaresma, Paulo |
author_role |
author |
author2 |
Borrego, Luís Quaresma, Paulo |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Poudyal, Prakash Borrego, Luís Quaresma, Paulo |
dc.subject.por.fl_str_mv |
named entities recognition machine learning |
topic |
named entities recognition machine learning |
description |
This paper deals with accuracy and performance of var- ious machine learning algorithms in the recognition and extraction of different types of named entities such as date, organization, reg- ulation laws and person. The experiment is based on 20 judicial decision documents from European Lex site. The obtained results were proposed for the selection of the best algorithm that selects appropriate maximum entities from the legal documents. To ver- ify the performance of algorithm, obtained data from the tagging entities were compared with manual work as reference. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-11-01T00:00:00Z 2012-02-02T17:00:46Z 2012-02-02 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10174/4899 http://hdl.handle.net/10174/4899 |
url |
http://hdl.handle.net/10174/4899 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Prakash Poudyal, Luis Borrego e Paulo Quaresma. Using machine learning algorithms to identify named entities in legal documents: a preliminary approach. In JIUE'2011 - 2as Jornadas de Informática da Universidade de Évora. Évora, Portugal, pages 33-38. ISBN: 978-989-97060-2-6. prakash@di.uevora.pt luis.borrego@hotmail. pq@di.uevora.pt 283 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Escola de Ciências e Tecnologia da Universidade de Évora |
publisher.none.fl_str_mv |
Escola de Ciências e Tecnologia da Universidade de Évora |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799136479970066432 |