Well‐being trajectories in breast cancer and their predictors: A machine‐learning approach
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Outros Autores: | , , , , , , , , , , , , , , , , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.12/9672 |
Resumo: | Objective:This study aimed to described istinct trajectories of anxiety/depression symptoms and overall health status/quality of life over a period of 18 months followinga breast cancer diagnosis,and identify the medical, socio-demographic,lifestyle, and psychologica lfactors that predict these trajectories.Methods:474 females (mean age=55.79 years) were enrolled in the first weeksafter surgery or biopsy. Data from seven assessmentpoints over 18 months, at 3-month intervals,were used. The two outcomeswere assessedat all points. Potential predictors were assessed at baseline and the first follow‐up. Machine‐ Learning techniques were used to detect latent patterns of change and identify the most important predictors. Results: Five trajectories were identified for each outcome: stably high, high with fluctuations, recovery, deteriorating/delayed response, and stably poor well‐being (chronic distress). Psychological factors (i.e., negative affect, coping, sense of control, social support), age, and a few medical variables (e.g., symptoms, immune‐ related inflammation) predicted patients' participation in the delayed response and the chronic distress trajectories versus all other trajectories. Conclusions: There is a strong possibility that resilience does not always reflect a stable response pattern, as there might be some interim fluctuations. The use of machine‐learning techniques provides a unique opportunity for the identification of illness trajectories and a shortlist of major bio/behavioral predictors. This will facilitate the development of early interventions to prevent a significant deterioration in patient well‐being |
id |
RCAP_ba90342513f0a16d644592150e0c47ec |
---|---|
oai_identifier_str |
oai:repositorio.ispa.pt:10400.12/9672 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Well‐being trajectories in breast cancer and their predictors: A machine‐learning approachBreast cancerCancêrOncologytrajectoriesTrajectory predictorObjective:This study aimed to described istinct trajectories of anxiety/depression symptoms and overall health status/quality of life over a period of 18 months followinga breast cancer diagnosis,and identify the medical, socio-demographic,lifestyle, and psychologica lfactors that predict these trajectories.Methods:474 females (mean age=55.79 years) were enrolled in the first weeksafter surgery or biopsy. Data from seven assessmentpoints over 18 months, at 3-month intervals,were used. The two outcomeswere assessedat all points. Potential predictors were assessed at baseline and the first follow‐up. Machine‐ Learning techniques were used to detect latent patterns of change and identify the most important predictors. Results: Five trajectories were identified for each outcome: stably high, high with fluctuations, recovery, deteriorating/delayed response, and stably poor well‐being (chronic distress). Psychological factors (i.e., negative affect, coping, sense of control, social support), age, and a few medical variables (e.g., symptoms, immune‐ related inflammation) predicted patients' participation in the delayed response and the chronic distress trajectories versus all other trajectories. Conclusions: There is a strong possibility that resilience does not always reflect a stable response pattern, as there might be some interim fluctuations. The use of machine‐learning techniques provides a unique opportunity for the identification of illness trajectories and a shortlist of major bio/behavioral predictors. This will facilitate the development of early interventions to prevent a significant deterioration in patient well‐beingJohn Wiley and Sons LtdRepositório do ISPAKarademas, EvangelosMylona, EugeniaMazzocco, KettiPat‐Horenczyk, RuthSousa, BertaOliveira‐Maia, Albino J.Oliveira, JoseRoziner, IlanStamatakos, GeorgiosCardoso, FatimaKondylakis, HaridimosKolokotroni, EleniKourou, KonstantinaLemos, RaquelManica, IsabelManikis, GeorgeMarzorati, ChiaraMattson, JohannaTravado, LuziaTziraki‐Segal, CharikliaFotiadis, DimitrisPoikonen‐Saksela, PaulaSimos, Panagiotis2024-03-14T17:46:42Z20232023-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.12/9672engKarademas, E. C., Mylona, E., Kondylakis, H., Kourou, K., Manikis, G., Fotiadis, D., Simos, P., Mazzocco, K., Marzorati, C., Pat-Horenczyk, R., Sousa, B., Cardoso, F., Oliveira-Maia, A. J., Oliveira, J., Lemos, R., Manica, I., Travado, L., Roziner, I., Stamatakos, G., … Tziraki-Segal, C. (2023). Well-being trajectories in breast cancer and their predictors: A machine-learning approach. Psycho-Oncology, 32(11), 1762–1770. https://doi.org/10.1002/pon.62301057924910.1002/pon.6230info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-17T02:15:56Zoai:repositorio.ispa.pt:10400.12/9672Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T04:01:53.530506Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Well‐being trajectories in breast cancer and their predictors: A machine‐learning approach |
title |
Well‐being trajectories in breast cancer and their predictors: A machine‐learning approach |
spellingShingle |
Well‐being trajectories in breast cancer and their predictors: A machine‐learning approach Karademas, Evangelos Breast cancer Cancêr Oncology trajectories Trajectory predictor |
title_short |
Well‐being trajectories in breast cancer and their predictors: A machine‐learning approach |
title_full |
Well‐being trajectories in breast cancer and their predictors: A machine‐learning approach |
title_fullStr |
Well‐being trajectories in breast cancer and their predictors: A machine‐learning approach |
title_full_unstemmed |
Well‐being trajectories in breast cancer and their predictors: A machine‐learning approach |
title_sort |
Well‐being trajectories in breast cancer and their predictors: A machine‐learning approach |
author |
Karademas, Evangelos |
author_facet |
Karademas, Evangelos Mylona, Eugenia Mazzocco, Ketti Pat‐Horenczyk, Ruth Sousa, Berta Oliveira‐Maia, Albino J. Oliveira, Jose Roziner, Ilan Stamatakos, Georgios Cardoso, Fatima Kondylakis, Haridimos Kolokotroni, Eleni Kourou, Konstantina Lemos, Raquel Manica, Isabel Manikis, George Marzorati, Chiara Mattson, Johanna Travado, Luzia Tziraki‐Segal, Chariklia Fotiadis, Dimitris Poikonen‐Saksela, Paula Simos, Panagiotis |
author_role |
author |
author2 |
Mylona, Eugenia Mazzocco, Ketti Pat‐Horenczyk, Ruth Sousa, Berta Oliveira‐Maia, Albino J. Oliveira, Jose Roziner, Ilan Stamatakos, Georgios Cardoso, Fatima Kondylakis, Haridimos Kolokotroni, Eleni Kourou, Konstantina Lemos, Raquel Manica, Isabel Manikis, George Marzorati, Chiara Mattson, Johanna Travado, Luzia Tziraki‐Segal, Chariklia Fotiadis, Dimitris Poikonen‐Saksela, Paula Simos, Panagiotis |
author2_role |
author author author author author author author author author author author author author author author author author author author author author author |
dc.contributor.none.fl_str_mv |
Repositório do ISPA |
dc.contributor.author.fl_str_mv |
Karademas, Evangelos Mylona, Eugenia Mazzocco, Ketti Pat‐Horenczyk, Ruth Sousa, Berta Oliveira‐Maia, Albino J. Oliveira, Jose Roziner, Ilan Stamatakos, Georgios Cardoso, Fatima Kondylakis, Haridimos Kolokotroni, Eleni Kourou, Konstantina Lemos, Raquel Manica, Isabel Manikis, George Marzorati, Chiara Mattson, Johanna Travado, Luzia Tziraki‐Segal, Chariklia Fotiadis, Dimitris Poikonen‐Saksela, Paula Simos, Panagiotis |
dc.subject.por.fl_str_mv |
Breast cancer Cancêr Oncology trajectories Trajectory predictor |
topic |
Breast cancer Cancêr Oncology trajectories Trajectory predictor |
description |
Objective:This study aimed to described istinct trajectories of anxiety/depression symptoms and overall health status/quality of life over a period of 18 months followinga breast cancer diagnosis,and identify the medical, socio-demographic,lifestyle, and psychologica lfactors that predict these trajectories.Methods:474 females (mean age=55.79 years) were enrolled in the first weeksafter surgery or biopsy. Data from seven assessmentpoints over 18 months, at 3-month intervals,were used. The two outcomeswere assessedat all points. Potential predictors were assessed at baseline and the first follow‐up. Machine‐ Learning techniques were used to detect latent patterns of change and identify the most important predictors. Results: Five trajectories were identified for each outcome: stably high, high with fluctuations, recovery, deteriorating/delayed response, and stably poor well‐being (chronic distress). Psychological factors (i.e., negative affect, coping, sense of control, social support), age, and a few medical variables (e.g., symptoms, immune‐ related inflammation) predicted patients' participation in the delayed response and the chronic distress trajectories versus all other trajectories. Conclusions: There is a strong possibility that resilience does not always reflect a stable response pattern, as there might be some interim fluctuations. The use of machine‐learning techniques provides a unique opportunity for the identification of illness trajectories and a shortlist of major bio/behavioral predictors. This will facilitate the development of early interventions to prevent a significant deterioration in patient well‐being |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023 2023-01-01T00:00:00Z 2024-03-14T17:46:42Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.12/9672 |
url |
http://hdl.handle.net/10400.12/9672 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Karademas, E. C., Mylona, E., Kondylakis, H., Kourou, K., Manikis, G., Fotiadis, D., Simos, P., Mazzocco, K., Marzorati, C., Pat-Horenczyk, R., Sousa, B., Cardoso, F., Oliveira-Maia, A. J., Oliveira, J., Lemos, R., Manica, I., Travado, L., Roziner, I., Stamatakos, G., … Tziraki-Segal, C. (2023). Well-being trajectories in breast cancer and their predictors: A machine-learning approach. Psycho-Oncology, 32(11), 1762–1770. https://doi.org/10.1002/pon.6230 10579249 10.1002/pon.6230 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
John Wiley and Sons Ltd |
publisher.none.fl_str_mv |
John Wiley and Sons Ltd |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138191777726464 |