Well‐being trajectories in breast cancer and their predictors: A machine‐learning approach

Detalhes bibliográficos
Autor(a) principal: Karademas, Evangelos
Data de Publicação: 2023
Outros Autores: Mylona, Eugenia, Mazzocco, Ketti, Pat‐Horenczyk, Ruth, Sousa, Berta, Oliveira‐Maia, Albino J., Oliveira, Jose, Roziner, Ilan, Stamatakos, Georgios, Cardoso, Fatima, Kondylakis, Haridimos, Kolokotroni, Eleni, Kourou, Konstantina, Lemos, Raquel, Manica, Isabel, Manikis, George, Marzorati, Chiara, Mattson, Johanna, Travado, Luzia, Tziraki‐Segal, Chariklia, Fotiadis, Dimitris, Poikonen‐Saksela, Paula, Simos, Panagiotis
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.12/9672
Resumo: Objective:This study aimed to described istinct trajectories of anxiety/depression symptoms and overall health status/quality of life over a period of 18 months followinga breast cancer diagnosis,and identify the medical, socio-demographic,lifestyle, and psychologica lfactors that predict these trajectories.Methods:474 females (mean age=55.79 years) were enrolled in the first weeksafter surgery or biopsy. Data from seven assessmentpoints over 18 months, at 3-month intervals,were used. The two outcomeswere assessedat all points. Potential predictors were assessed at baseline and the first follow‐up. Machine‐ Learning techniques were used to detect latent patterns of change and identify the most important predictors. Results: Five trajectories were identified for each outcome: stably high, high with fluctuations, recovery, deteriorating/delayed response, and stably poor well‐being (chronic distress). Psychological factors (i.e., negative affect, coping, sense of control, social support), age, and a few medical variables (e.g., symptoms, immune‐ related inflammation) predicted patients' participation in the delayed response and the chronic distress trajectories versus all other trajectories. Conclusions: There is a strong possibility that resilience does not always reflect a stable response pattern, as there might be some interim fluctuations. The use of machine‐learning techniques provides a unique opportunity for the identification of illness trajectories and a shortlist of major bio/behavioral predictors. This will facilitate the development of early interventions to prevent a significant deterioration in patient well‐being
id RCAP_ba90342513f0a16d644592150e0c47ec
oai_identifier_str oai:repositorio.ispa.pt:10400.12/9672
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Well‐being trajectories in breast cancer and their predictors: A machine‐learning approachBreast cancerCancêrOncologytrajectoriesTrajectory predictorObjective:This study aimed to described istinct trajectories of anxiety/depression symptoms and overall health status/quality of life over a period of 18 months followinga breast cancer diagnosis,and identify the medical, socio-demographic,lifestyle, and psychologica lfactors that predict these trajectories.Methods:474 females (mean age=55.79 years) were enrolled in the first weeksafter surgery or biopsy. Data from seven assessmentpoints over 18 months, at 3-month intervals,were used. The two outcomeswere assessedat all points. Potential predictors were assessed at baseline and the first follow‐up. Machine‐ Learning techniques were used to detect latent patterns of change and identify the most important predictors. Results: Five trajectories were identified for each outcome: stably high, high with fluctuations, recovery, deteriorating/delayed response, and stably poor well‐being (chronic distress). Psychological factors (i.e., negative affect, coping, sense of control, social support), age, and a few medical variables (e.g., symptoms, immune‐ related inflammation) predicted patients' participation in the delayed response and the chronic distress trajectories versus all other trajectories. Conclusions: There is a strong possibility that resilience does not always reflect a stable response pattern, as there might be some interim fluctuations. The use of machine‐learning techniques provides a unique opportunity for the identification of illness trajectories and a shortlist of major bio/behavioral predictors. This will facilitate the development of early interventions to prevent a significant deterioration in patient well‐beingJohn Wiley and Sons LtdRepositório do ISPAKarademas, EvangelosMylona, EugeniaMazzocco, KettiPat‐Horenczyk, RuthSousa, BertaOliveira‐Maia, Albino J.Oliveira, JoseRoziner, IlanStamatakos, GeorgiosCardoso, FatimaKondylakis, HaridimosKolokotroni, EleniKourou, KonstantinaLemos, RaquelManica, IsabelManikis, GeorgeMarzorati, ChiaraMattson, JohannaTravado, LuziaTziraki‐Segal, CharikliaFotiadis, DimitrisPoikonen‐Saksela, PaulaSimos, Panagiotis2024-03-14T17:46:42Z20232023-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.12/9672engKarademas, E. C., Mylona, E., Kondylakis, H., Kourou, K., Manikis, G., Fotiadis, D., Simos, P., Mazzocco, K., Marzorati, C., Pat-Horenczyk, R., Sousa, B., Cardoso, F., Oliveira-Maia, A. J., Oliveira, J., Lemos, R., Manica, I., Travado, L., Roziner, I., Stamatakos, G., … Tziraki-Segal, C. (2023). Well-being trajectories in breast cancer and their predictors: A machine-learning approach. Psycho-Oncology, 32(11), 1762–1770. https://doi.org/10.1002/pon.62301057924910.1002/pon.6230info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-17T02:15:56Zoai:repositorio.ispa.pt:10400.12/9672Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T04:01:53.530506Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Well‐being trajectories in breast cancer and their predictors: A machine‐learning approach
title Well‐being trajectories in breast cancer and their predictors: A machine‐learning approach
spellingShingle Well‐being trajectories in breast cancer and their predictors: A machine‐learning approach
Karademas, Evangelos
Breast cancer
Cancêr
Oncology
trajectories
Trajectory predictor
title_short Well‐being trajectories in breast cancer and their predictors: A machine‐learning approach
title_full Well‐being trajectories in breast cancer and their predictors: A machine‐learning approach
title_fullStr Well‐being trajectories in breast cancer and their predictors: A machine‐learning approach
title_full_unstemmed Well‐being trajectories in breast cancer and their predictors: A machine‐learning approach
title_sort Well‐being trajectories in breast cancer and their predictors: A machine‐learning approach
author Karademas, Evangelos
author_facet Karademas, Evangelos
Mylona, Eugenia
Mazzocco, Ketti
Pat‐Horenczyk, Ruth
Sousa, Berta
Oliveira‐Maia, Albino J.
Oliveira, Jose
Roziner, Ilan
Stamatakos, Georgios
Cardoso, Fatima
Kondylakis, Haridimos
Kolokotroni, Eleni
Kourou, Konstantina
Lemos, Raquel
Manica, Isabel
Manikis, George
Marzorati, Chiara
Mattson, Johanna
Travado, Luzia
Tziraki‐Segal, Chariklia
Fotiadis, Dimitris
Poikonen‐Saksela, Paula
Simos, Panagiotis
author_role author
author2 Mylona, Eugenia
Mazzocco, Ketti
Pat‐Horenczyk, Ruth
Sousa, Berta
Oliveira‐Maia, Albino J.
Oliveira, Jose
Roziner, Ilan
Stamatakos, Georgios
Cardoso, Fatima
Kondylakis, Haridimos
Kolokotroni, Eleni
Kourou, Konstantina
Lemos, Raquel
Manica, Isabel
Manikis, George
Marzorati, Chiara
Mattson, Johanna
Travado, Luzia
Tziraki‐Segal, Chariklia
Fotiadis, Dimitris
Poikonen‐Saksela, Paula
Simos, Panagiotis
author2_role author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv Repositório do ISPA
dc.contributor.author.fl_str_mv Karademas, Evangelos
Mylona, Eugenia
Mazzocco, Ketti
Pat‐Horenczyk, Ruth
Sousa, Berta
Oliveira‐Maia, Albino J.
Oliveira, Jose
Roziner, Ilan
Stamatakos, Georgios
Cardoso, Fatima
Kondylakis, Haridimos
Kolokotroni, Eleni
Kourou, Konstantina
Lemos, Raquel
Manica, Isabel
Manikis, George
Marzorati, Chiara
Mattson, Johanna
Travado, Luzia
Tziraki‐Segal, Chariklia
Fotiadis, Dimitris
Poikonen‐Saksela, Paula
Simos, Panagiotis
dc.subject.por.fl_str_mv Breast cancer
Cancêr
Oncology
trajectories
Trajectory predictor
topic Breast cancer
Cancêr
Oncology
trajectories
Trajectory predictor
description Objective:This study aimed to described istinct trajectories of anxiety/depression symptoms and overall health status/quality of life over a period of 18 months followinga breast cancer diagnosis,and identify the medical, socio-demographic,lifestyle, and psychologica lfactors that predict these trajectories.Methods:474 females (mean age=55.79 years) were enrolled in the first weeksafter surgery or biopsy. Data from seven assessmentpoints over 18 months, at 3-month intervals,were used. The two outcomeswere assessedat all points. Potential predictors were assessed at baseline and the first follow‐up. Machine‐ Learning techniques were used to detect latent patterns of change and identify the most important predictors. Results: Five trajectories were identified for each outcome: stably high, high with fluctuations, recovery, deteriorating/delayed response, and stably poor well‐being (chronic distress). Psychological factors (i.e., negative affect, coping, sense of control, social support), age, and a few medical variables (e.g., symptoms, immune‐ related inflammation) predicted patients' participation in the delayed response and the chronic distress trajectories versus all other trajectories. Conclusions: There is a strong possibility that resilience does not always reflect a stable response pattern, as there might be some interim fluctuations. The use of machine‐learning techniques provides a unique opportunity for the identification of illness trajectories and a shortlist of major bio/behavioral predictors. This will facilitate the development of early interventions to prevent a significant deterioration in patient well‐being
publishDate 2023
dc.date.none.fl_str_mv 2023
2023-01-01T00:00:00Z
2024-03-14T17:46:42Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.12/9672
url http://hdl.handle.net/10400.12/9672
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Karademas, E. C., Mylona, E., Kondylakis, H., Kourou, K., Manikis, G., Fotiadis, D., Simos, P., Mazzocco, K., Marzorati, C., Pat-Horenczyk, R., Sousa, B., Cardoso, F., Oliveira-Maia, A. J., Oliveira, J., Lemos, R., Manica, I., Travado, L., Roziner, I., Stamatakos, G., … Tziraki-Segal, C. (2023). Well-being trajectories in breast cancer and their predictors: A machine-learning approach. Psycho-Oncology, 32(11), 1762–1770. https://doi.org/10.1002/pon.6230
10579249
10.1002/pon.6230
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv John Wiley and Sons Ltd
publisher.none.fl_str_mv John Wiley and Sons Ltd
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799138191777726464