Autoencoder-based Image Recommendation for Lung Cancer Characterization
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | https://hdl.handle.net/10216/152144 |
Resumo: | In this project, we aim to develop an AI system that recommends a set of relative (past) cases to guide the decision-making of the clinician. Objective: The ambition is to develop an AI-based learning model for lung cancer characterization in order to assist in clinical routine. Considering the complexity of the biological phenomenat hat occur during cancer development, relationships between these and visual manifestations captured by CT have been explored in recent years; however, given the lack of robustness of current deep learning methods, these correlations are often found spurious and get lost when facing data collected from shifted distributions: different institutions, demographics or even stages of cancer development. |
id |
RCAP_baad0b63ae3003870f95b904368608ca |
---|---|
oai_identifier_str |
oai:repositorio-aberto.up.pt:10216/152144 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Autoencoder-based Image Recommendation for Lung Cancer CharacterizationOutras ciências da engenharia e tecnologiasOther engineering and technologiesIn this project, we aim to develop an AI system that recommends a set of relative (past) cases to guide the decision-making of the clinician. Objective: The ambition is to develop an AI-based learning model for lung cancer characterization in order to assist in clinical routine. Considering the complexity of the biological phenomenat hat occur during cancer development, relationships between these and visual manifestations captured by CT have been explored in recent years; however, given the lack of robustness of current deep learning methods, these correlations are often found spurious and get lost when facing data collected from shifted distributions: different institutions, demographics or even stages of cancer development.2023-07-122023-07-12T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://hdl.handle.net/10216/152144TID:203423798engGuilherme Carlos Sallesinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-12-22T01:31:36Zoai:repositorio-aberto.up.pt:10216/152144Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T00:05:14.849989Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Autoencoder-based Image Recommendation for Lung Cancer Characterization |
title |
Autoencoder-based Image Recommendation for Lung Cancer Characterization |
spellingShingle |
Autoencoder-based Image Recommendation for Lung Cancer Characterization Guilherme Carlos Salles Outras ciências da engenharia e tecnologias Other engineering and technologies |
title_short |
Autoencoder-based Image Recommendation for Lung Cancer Characterization |
title_full |
Autoencoder-based Image Recommendation for Lung Cancer Characterization |
title_fullStr |
Autoencoder-based Image Recommendation for Lung Cancer Characterization |
title_full_unstemmed |
Autoencoder-based Image Recommendation for Lung Cancer Characterization |
title_sort |
Autoencoder-based Image Recommendation for Lung Cancer Characterization |
author |
Guilherme Carlos Salles |
author_facet |
Guilherme Carlos Salles |
author_role |
author |
dc.contributor.author.fl_str_mv |
Guilherme Carlos Salles |
dc.subject.por.fl_str_mv |
Outras ciências da engenharia e tecnologias Other engineering and technologies |
topic |
Outras ciências da engenharia e tecnologias Other engineering and technologies |
description |
In this project, we aim to develop an AI system that recommends a set of relative (past) cases to guide the decision-making of the clinician. Objective: The ambition is to develop an AI-based learning model for lung cancer characterization in order to assist in clinical routine. Considering the complexity of the biological phenomenat hat occur during cancer development, relationships between these and visual manifestations captured by CT have been explored in recent years; however, given the lack of robustness of current deep learning methods, these correlations are often found spurious and get lost when facing data collected from shifted distributions: different institutions, demographics or even stages of cancer development. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-07-12 2023-07-12T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/10216/152144 TID:203423798 |
url |
https://hdl.handle.net/10216/152144 |
identifier_str_mv |
TID:203423798 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799135976067432448 |