Prediction of Visual Behaviour in Immersive Contents

Detalhes bibliográficos
Autor(a) principal: Nuno Rodrigues de Castro Santos Silva
Data de Publicação: 2022
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: https://hdl.handle.net/10216/147532
Resumo: In the world of broadcasting and streaming, multi-view video provides the ability to present multiple perspectives of the same video sequence, therefore providing to the viewer a sense of immersion in the real-world scene. It can be compared to VR and 360° video, still, there are significant differences, notably in the way that images are acquired: instead of placing the user at the center, presenting the scene around the user in a 360° circle, it uses multiple cameras placed in a 360° circle around the real-world scene of interest, capturing all of the possible perspectives of that scene. Additionally, in relation to VR, it uses natural video sequences and displays. One issue which plagues content streaming of all kinds is the bandwidth requirement which, particularly on VR and multi-view applications, translates into an increase of the required data transmission rate. A possible solution to lower the required bandwidth, would be to limit the number of views to be streamed fully, focusing on those surrounding the area at which the user is keeping his sight. This is proposed by SmoothMV, a multi-view system that uses a non-intrusive head tracking approach to enhance navigation and Quality of Experience (QoE) of the viewer. This system relies on a novel "Hot&Cold" matrix concept to translate head positioning data into viewing angle selections. The main goal of this dissertation focus on the transformation and storage of the data acquired using SmoothMV into datasets. These will be used as training data for a proposed Neural Network, fully integrated within SmoothMV, with the purpose of predicting the interest points on the screen of the users during the playback of multi-view content. The goal behind this effort is to predict possible viewing interests from the user in the near future and optimize bandwidth usage through buffering of adjacent views which could possibly be requested by the user. After concluding the development of this dataset, work in this dissertation will focus on the formulation of a solution to present generated heatmaps of the most viewed areas per video, previously captured using SmoothMV.
id RCAP_bacc0dcfd417fb7de2e0a55ca11ccf6f
oai_identifier_str oai:repositorio-aberto.up.pt:10216/147532
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Prediction of Visual Behaviour in Immersive ContentsOutras ciências da engenharia e tecnologiasOther engineering and technologiesIn the world of broadcasting and streaming, multi-view video provides the ability to present multiple perspectives of the same video sequence, therefore providing to the viewer a sense of immersion in the real-world scene. It can be compared to VR and 360° video, still, there are significant differences, notably in the way that images are acquired: instead of placing the user at the center, presenting the scene around the user in a 360° circle, it uses multiple cameras placed in a 360° circle around the real-world scene of interest, capturing all of the possible perspectives of that scene. Additionally, in relation to VR, it uses natural video sequences and displays. One issue which plagues content streaming of all kinds is the bandwidth requirement which, particularly on VR and multi-view applications, translates into an increase of the required data transmission rate. A possible solution to lower the required bandwidth, would be to limit the number of views to be streamed fully, focusing on those surrounding the area at which the user is keeping his sight. This is proposed by SmoothMV, a multi-view system that uses a non-intrusive head tracking approach to enhance navigation and Quality of Experience (QoE) of the viewer. This system relies on a novel "Hot&Cold" matrix concept to translate head positioning data into viewing angle selections. The main goal of this dissertation focus on the transformation and storage of the data acquired using SmoothMV into datasets. These will be used as training data for a proposed Neural Network, fully integrated within SmoothMV, with the purpose of predicting the interest points on the screen of the users during the playback of multi-view content. The goal behind this effort is to predict possible viewing interests from the user in the near future and optimize bandwidth usage through buffering of adjacent views which could possibly be requested by the user. After concluding the development of this dataset, work in this dissertation will focus on the formulation of a solution to present generated heatmaps of the most viewed areas per video, previously captured using SmoothMV.2022-07-212022-07-21T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://hdl.handle.net/10216/147532TID:203171012engNuno Rodrigues de Castro Santos Silvainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-29T14:10:06Zoai:repositorio-aberto.up.pt:10216/147532Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T23:56:12.145722Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Prediction of Visual Behaviour in Immersive Contents
title Prediction of Visual Behaviour in Immersive Contents
spellingShingle Prediction of Visual Behaviour in Immersive Contents
Nuno Rodrigues de Castro Santos Silva
Outras ciências da engenharia e tecnologias
Other engineering and technologies
title_short Prediction of Visual Behaviour in Immersive Contents
title_full Prediction of Visual Behaviour in Immersive Contents
title_fullStr Prediction of Visual Behaviour in Immersive Contents
title_full_unstemmed Prediction of Visual Behaviour in Immersive Contents
title_sort Prediction of Visual Behaviour in Immersive Contents
author Nuno Rodrigues de Castro Santos Silva
author_facet Nuno Rodrigues de Castro Santos Silva
author_role author
dc.contributor.author.fl_str_mv Nuno Rodrigues de Castro Santos Silva
dc.subject.por.fl_str_mv Outras ciências da engenharia e tecnologias
Other engineering and technologies
topic Outras ciências da engenharia e tecnologias
Other engineering and technologies
description In the world of broadcasting and streaming, multi-view video provides the ability to present multiple perspectives of the same video sequence, therefore providing to the viewer a sense of immersion in the real-world scene. It can be compared to VR and 360° video, still, there are significant differences, notably in the way that images are acquired: instead of placing the user at the center, presenting the scene around the user in a 360° circle, it uses multiple cameras placed in a 360° circle around the real-world scene of interest, capturing all of the possible perspectives of that scene. Additionally, in relation to VR, it uses natural video sequences and displays. One issue which plagues content streaming of all kinds is the bandwidth requirement which, particularly on VR and multi-view applications, translates into an increase of the required data transmission rate. A possible solution to lower the required bandwidth, would be to limit the number of views to be streamed fully, focusing on those surrounding the area at which the user is keeping his sight. This is proposed by SmoothMV, a multi-view system that uses a non-intrusive head tracking approach to enhance navigation and Quality of Experience (QoE) of the viewer. This system relies on a novel "Hot&Cold" matrix concept to translate head positioning data into viewing angle selections. The main goal of this dissertation focus on the transformation and storage of the data acquired using SmoothMV into datasets. These will be used as training data for a proposed Neural Network, fully integrated within SmoothMV, with the purpose of predicting the interest points on the screen of the users during the playback of multi-view content. The goal behind this effort is to predict possible viewing interests from the user in the near future and optimize bandwidth usage through buffering of adjacent views which could possibly be requested by the user. After concluding the development of this dataset, work in this dissertation will focus on the formulation of a solution to present generated heatmaps of the most viewed areas per video, previously captured using SmoothMV.
publishDate 2022
dc.date.none.fl_str_mv 2022-07-21
2022-07-21T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/10216/147532
TID:203171012
url https://hdl.handle.net/10216/147532
identifier_str_mv TID:203171012
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799135882625679360