Separating positional noise from neutral alignment in multicomponent statistical shape models

Detalhes bibliográficos
Autor(a) principal: Audenaert, E. A.
Data de Publicação: 2020
Outros Autores: Van den Eyndeb, J., Almeida, D. F. de, Steenackers, G., Vandermeulen, D., Claes, P.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.8/8411
Resumo: Given sufficient training samples, statistical shape models can provide detailed population representations for use in anthropological and computational genetic studies, injury biomechanics, musculoskeletal disease models or implant design optimization. While the technique has become extremely popular for the description of isolated anatomical structures, it suffers from positional interference when applied to coupled or articulated input data. In the present manuscript we describe and validate a novel approach to extract positional noise from such coupled data. The technique was first validated and then implemented in a multicomponent model of the lower limb. The impact of noise on the model itself as well as on the description of sexual dimorphism was evaluated. The novelty of our methodology lies in the fact that no rigid transformations are calculated or imposed on the data by means of idealized joint definitions and by extension the models obtained from them.
id RCAP_bb6462eb48e02aa5e36d409e8e32455d
oai_identifier_str oai:iconline.ipleiria.pt:10400.8/8411
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Separating positional noise from neutral alignment in multicomponent statistical shape modelsImage analysisSex dimorphismGeometric morphometricsMultivariate regressionAnatomyGiven sufficient training samples, statistical shape models can provide detailed population representations for use in anthropological and computational genetic studies, injury biomechanics, musculoskeletal disease models or implant design optimization. While the technique has become extremely popular for the description of isolated anatomical structures, it suffers from positional interference when applied to coupled or articulated input data. In the present manuscript we describe and validate a novel approach to extract positional noise from such coupled data. The technique was first validated and then implemented in a multicomponent model of the lower limb. The impact of noise on the model itself as well as on the description of sexual dimorphism was evaluated. The novelty of our methodology lies in the fact that no rigid transformations are calculated or imposed on the data by means of idealized joint definitions and by extension the models obtained from them.ElsevierIC-OnlineAudenaert, E. A.Van den Eyndeb, J.Almeida, D. F. deSteenackers, G.Vandermeulen, D.Claes, P.2023-04-18T15:52:46Z2020-012020-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.8/8411engAudenaert, E. A., Van den Eynde, J., de Almeida, D. F., Steenackers, G., Vandermeulen, D., & Claes, P. (2020). Separating positional noise from neutral alignment in multicomponent statistical shape models. Bone Reports, 12. https://doi.org/10.1016/j.bonr.2020.1002432352-187210.1016/j.bonr.2020.100243info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-01-17T15:57:16Zoai:iconline.ipleiria.pt:10400.8/8411Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T01:51:08.361875Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Separating positional noise from neutral alignment in multicomponent statistical shape models
title Separating positional noise from neutral alignment in multicomponent statistical shape models
spellingShingle Separating positional noise from neutral alignment in multicomponent statistical shape models
Audenaert, E. A.
Image analysis
Sex dimorphism
Geometric morphometrics
Multivariate regression
Anatomy
title_short Separating positional noise from neutral alignment in multicomponent statistical shape models
title_full Separating positional noise from neutral alignment in multicomponent statistical shape models
title_fullStr Separating positional noise from neutral alignment in multicomponent statistical shape models
title_full_unstemmed Separating positional noise from neutral alignment in multicomponent statistical shape models
title_sort Separating positional noise from neutral alignment in multicomponent statistical shape models
author Audenaert, E. A.
author_facet Audenaert, E. A.
Van den Eyndeb, J.
Almeida, D. F. de
Steenackers, G.
Vandermeulen, D.
Claes, P.
author_role author
author2 Van den Eyndeb, J.
Almeida, D. F. de
Steenackers, G.
Vandermeulen, D.
Claes, P.
author2_role author
author
author
author
author
dc.contributor.none.fl_str_mv IC-Online
dc.contributor.author.fl_str_mv Audenaert, E. A.
Van den Eyndeb, J.
Almeida, D. F. de
Steenackers, G.
Vandermeulen, D.
Claes, P.
dc.subject.por.fl_str_mv Image analysis
Sex dimorphism
Geometric morphometrics
Multivariate regression
Anatomy
topic Image analysis
Sex dimorphism
Geometric morphometrics
Multivariate regression
Anatomy
description Given sufficient training samples, statistical shape models can provide detailed population representations for use in anthropological and computational genetic studies, injury biomechanics, musculoskeletal disease models or implant design optimization. While the technique has become extremely popular for the description of isolated anatomical structures, it suffers from positional interference when applied to coupled or articulated input data. In the present manuscript we describe and validate a novel approach to extract positional noise from such coupled data. The technique was first validated and then implemented in a multicomponent model of the lower limb. The impact of noise on the model itself as well as on the description of sexual dimorphism was evaluated. The novelty of our methodology lies in the fact that no rigid transformations are calculated or imposed on the data by means of idealized joint definitions and by extension the models obtained from them.
publishDate 2020
dc.date.none.fl_str_mv 2020-01
2020-01-01T00:00:00Z
2023-04-18T15:52:46Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.8/8411
url http://hdl.handle.net/10400.8/8411
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Audenaert, E. A., Van den Eynde, J., de Almeida, D. F., Steenackers, G., Vandermeulen, D., & Claes, P. (2020). Separating positional noise from neutral alignment in multicomponent statistical shape models. Bone Reports, 12. https://doi.org/10.1016/j.bonr.2020.100243
2352-1872
10.1016/j.bonr.2020.100243
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137002927423488