Separating positional noise from neutral alignment in multicomponent statistical shape models
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.8/8411 |
Resumo: | Given sufficient training samples, statistical shape models can provide detailed population representations for use in anthropological and computational genetic studies, injury biomechanics, musculoskeletal disease models or implant design optimization. While the technique has become extremely popular for the description of isolated anatomical structures, it suffers from positional interference when applied to coupled or articulated input data. In the present manuscript we describe and validate a novel approach to extract positional noise from such coupled data. The technique was first validated and then implemented in a multicomponent model of the lower limb. The impact of noise on the model itself as well as on the description of sexual dimorphism was evaluated. The novelty of our methodology lies in the fact that no rigid transformations are calculated or imposed on the data by means of idealized joint definitions and by extension the models obtained from them. |
id |
RCAP_bb6462eb48e02aa5e36d409e8e32455d |
---|---|
oai_identifier_str |
oai:iconline.ipleiria.pt:10400.8/8411 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Separating positional noise from neutral alignment in multicomponent statistical shape modelsImage analysisSex dimorphismGeometric morphometricsMultivariate regressionAnatomyGiven sufficient training samples, statistical shape models can provide detailed population representations for use in anthropological and computational genetic studies, injury biomechanics, musculoskeletal disease models or implant design optimization. While the technique has become extremely popular for the description of isolated anatomical structures, it suffers from positional interference when applied to coupled or articulated input data. In the present manuscript we describe and validate a novel approach to extract positional noise from such coupled data. The technique was first validated and then implemented in a multicomponent model of the lower limb. The impact of noise on the model itself as well as on the description of sexual dimorphism was evaluated. The novelty of our methodology lies in the fact that no rigid transformations are calculated or imposed on the data by means of idealized joint definitions and by extension the models obtained from them.ElsevierIC-OnlineAudenaert, E. A.Van den Eyndeb, J.Almeida, D. F. deSteenackers, G.Vandermeulen, D.Claes, P.2023-04-18T15:52:46Z2020-012020-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.8/8411engAudenaert, E. A., Van den Eynde, J., de Almeida, D. F., Steenackers, G., Vandermeulen, D., & Claes, P. (2020). Separating positional noise from neutral alignment in multicomponent statistical shape models. Bone Reports, 12. https://doi.org/10.1016/j.bonr.2020.1002432352-187210.1016/j.bonr.2020.100243info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-01-17T15:57:16Zoai:iconline.ipleiria.pt:10400.8/8411Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T01:51:08.361875Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Separating positional noise from neutral alignment in multicomponent statistical shape models |
title |
Separating positional noise from neutral alignment in multicomponent statistical shape models |
spellingShingle |
Separating positional noise from neutral alignment in multicomponent statistical shape models Audenaert, E. A. Image analysis Sex dimorphism Geometric morphometrics Multivariate regression Anatomy |
title_short |
Separating positional noise from neutral alignment in multicomponent statistical shape models |
title_full |
Separating positional noise from neutral alignment in multicomponent statistical shape models |
title_fullStr |
Separating positional noise from neutral alignment in multicomponent statistical shape models |
title_full_unstemmed |
Separating positional noise from neutral alignment in multicomponent statistical shape models |
title_sort |
Separating positional noise from neutral alignment in multicomponent statistical shape models |
author |
Audenaert, E. A. |
author_facet |
Audenaert, E. A. Van den Eyndeb, J. Almeida, D. F. de Steenackers, G. Vandermeulen, D. Claes, P. |
author_role |
author |
author2 |
Van den Eyndeb, J. Almeida, D. F. de Steenackers, G. Vandermeulen, D. Claes, P. |
author2_role |
author author author author author |
dc.contributor.none.fl_str_mv |
IC-Online |
dc.contributor.author.fl_str_mv |
Audenaert, E. A. Van den Eyndeb, J. Almeida, D. F. de Steenackers, G. Vandermeulen, D. Claes, P. |
dc.subject.por.fl_str_mv |
Image analysis Sex dimorphism Geometric morphometrics Multivariate regression Anatomy |
topic |
Image analysis Sex dimorphism Geometric morphometrics Multivariate regression Anatomy |
description |
Given sufficient training samples, statistical shape models can provide detailed population representations for use in anthropological and computational genetic studies, injury biomechanics, musculoskeletal disease models or implant design optimization. While the technique has become extremely popular for the description of isolated anatomical structures, it suffers from positional interference when applied to coupled or articulated input data. In the present manuscript we describe and validate a novel approach to extract positional noise from such coupled data. The technique was first validated and then implemented in a multicomponent model of the lower limb. The impact of noise on the model itself as well as on the description of sexual dimorphism was evaluated. The novelty of our methodology lies in the fact that no rigid transformations are calculated or imposed on the data by means of idealized joint definitions and by extension the models obtained from them. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-01 2020-01-01T00:00:00Z 2023-04-18T15:52:46Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.8/8411 |
url |
http://hdl.handle.net/10400.8/8411 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Audenaert, E. A., Van den Eynde, J., de Almeida, D. F., Steenackers, G., Vandermeulen, D., & Claes, P. (2020). Separating positional noise from neutral alignment in multicomponent statistical shape models. Bone Reports, 12. https://doi.org/10.1016/j.bonr.2020.100243 2352-1872 10.1016/j.bonr.2020.100243 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137002927423488 |