A logic programming approach to medical errors in imaging

Detalhes bibliográficos
Autor(a) principal: Rodrigues, Susana Isabel Magalhães da Rocha
Data de Publicação: 2011
Outros Autores: Brandão, Paulo, Nelas, Luís, Neves, José, Alves, Victor
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/1822/14342
Resumo: Background: In 2000, the Institute of Medicine reported alarming data on the scope and impact of medical errors calling the public attention. One solution to this problem is the adoption of adverse event reporting and learning systems that can help to identify hazards and risks. The accumulation of potentially relevant data in databases contributes little to quality improvement. It is crucial to apply models to identify the adverse events root causes, enhance the sharing of knowledge and experience. The efficiency of the efforts to improve patient safety has been frustratingly slow. Some of this insufficient of progress may be assigned to the lack of systems that take into account the characteristic of the information about the real world. On our daily life, we make most of our decisions, if not all of them, based on incomplete, uncertain and even forbidden or contradictory information. Knowledge is central to the problems of modern economy and society. One’s knowledge is less based on exact facts and more on hypothesis, perceptions or indications. Purpose: From the data collected on our adverse event reporting and learning system, and through Extended Logic Programming and Knowledge Representation, we intend to generate reports that identify the most relevant causes and define improvement strategies, concluding about the impact, place of occurrence, type of form and type of event recorded in the healthcare institutions. Results and Conclusions: The Eindhoven Classification Model was extended and adapted to the medical imaging field and used to classify adverse events root causes. Extended Logic Programming was used for knowledge representation with defective information, allowing for the modelling of the universe of discourse in terms of default data and knowledge. A systematization of the evolution of the body of knowledge about Quality of Information embedded in the Root Cause Analysis was accomplished. An adverse event reporting and learning system was developed based on the presented approach to medical errors in imaging. This system was deployed in two Portuguese healthcare institutions presenting useful results. The system enabled to verify that the majority of occurrences were concentrate in a few events that could be avoided. The developed system allowed automatic knowledge extraction, enabling report generation with strategies for quality improvement.
id RCAP_bc04b8d928e836abff6724193b7fe1bf
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/14342
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling A logic programming approach to medical errors in imagingMedical errorClassification systemMedical imagingKnowledge representationScience & TechnologyBackground: In 2000, the Institute of Medicine reported alarming data on the scope and impact of medical errors calling the public attention. One solution to this problem is the adoption of adverse event reporting and learning systems that can help to identify hazards and risks. The accumulation of potentially relevant data in databases contributes little to quality improvement. It is crucial to apply models to identify the adverse events root causes, enhance the sharing of knowledge and experience. The efficiency of the efforts to improve patient safety has been frustratingly slow. Some of this insufficient of progress may be assigned to the lack of systems that take into account the characteristic of the information about the real world. On our daily life, we make most of our decisions, if not all of them, based on incomplete, uncertain and even forbidden or contradictory information. Knowledge is central to the problems of modern economy and society. One’s knowledge is less based on exact facts and more on hypothesis, perceptions or indications. Purpose: From the data collected on our adverse event reporting and learning system, and through Extended Logic Programming and Knowledge Representation, we intend to generate reports that identify the most relevant causes and define improvement strategies, concluding about the impact, place of occurrence, type of form and type of event recorded in the healthcare institutions. Results and Conclusions: The Eindhoven Classification Model was extended and adapted to the medical imaging field and used to classify adverse events root causes. Extended Logic Programming was used for knowledge representation with defective information, allowing for the modelling of the universe of discourse in terms of default data and knowledge. A systematization of the evolution of the body of knowledge about Quality of Information embedded in the Root Cause Analysis was accomplished. An adverse event reporting and learning system was developed based on the presented approach to medical errors in imaging. This system was deployed in two Portuguese healthcare institutions presenting useful results. The system enabled to verify that the majority of occurrences were concentrate in a few events that could be avoided. The developed system allowed automatic knowledge extraction, enabling report generation with strategies for quality improvement.ElsevierUniversidade do MinhoRodrigues, Susana Isabel Magalhães da RochaBrandão, PauloNelas, LuísNeves, JoséAlves, Victor20112011-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/14342eng1386-505610.1016/j.ijmedinf.2011.06.00521783408http://www.ijmijournal.com/info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:52:44Zoai:repositorium.sdum.uminho.pt:1822/14342Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:51:56.805432Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv A logic programming approach to medical errors in imaging
title A logic programming approach to medical errors in imaging
spellingShingle A logic programming approach to medical errors in imaging
Rodrigues, Susana Isabel Magalhães da Rocha
Medical error
Classification system
Medical imaging
Knowledge representation
Science & Technology
title_short A logic programming approach to medical errors in imaging
title_full A logic programming approach to medical errors in imaging
title_fullStr A logic programming approach to medical errors in imaging
title_full_unstemmed A logic programming approach to medical errors in imaging
title_sort A logic programming approach to medical errors in imaging
author Rodrigues, Susana Isabel Magalhães da Rocha
author_facet Rodrigues, Susana Isabel Magalhães da Rocha
Brandão, Paulo
Nelas, Luís
Neves, José
Alves, Victor
author_role author
author2 Brandão, Paulo
Nelas, Luís
Neves, José
Alves, Victor
author2_role author
author
author
author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Rodrigues, Susana Isabel Magalhães da Rocha
Brandão, Paulo
Nelas, Luís
Neves, José
Alves, Victor
dc.subject.por.fl_str_mv Medical error
Classification system
Medical imaging
Knowledge representation
Science & Technology
topic Medical error
Classification system
Medical imaging
Knowledge representation
Science & Technology
description Background: In 2000, the Institute of Medicine reported alarming data on the scope and impact of medical errors calling the public attention. One solution to this problem is the adoption of adverse event reporting and learning systems that can help to identify hazards and risks. The accumulation of potentially relevant data in databases contributes little to quality improvement. It is crucial to apply models to identify the adverse events root causes, enhance the sharing of knowledge and experience. The efficiency of the efforts to improve patient safety has been frustratingly slow. Some of this insufficient of progress may be assigned to the lack of systems that take into account the characteristic of the information about the real world. On our daily life, we make most of our decisions, if not all of them, based on incomplete, uncertain and even forbidden or contradictory information. Knowledge is central to the problems of modern economy and society. One’s knowledge is less based on exact facts and more on hypothesis, perceptions or indications. Purpose: From the data collected on our adverse event reporting and learning system, and through Extended Logic Programming and Knowledge Representation, we intend to generate reports that identify the most relevant causes and define improvement strategies, concluding about the impact, place of occurrence, type of form and type of event recorded in the healthcare institutions. Results and Conclusions: The Eindhoven Classification Model was extended and adapted to the medical imaging field and used to classify adverse events root causes. Extended Logic Programming was used for knowledge representation with defective information, allowing for the modelling of the universe of discourse in terms of default data and knowledge. A systematization of the evolution of the body of knowledge about Quality of Information embedded in the Root Cause Analysis was accomplished. An adverse event reporting and learning system was developed based on the presented approach to medical errors in imaging. This system was deployed in two Portuguese healthcare institutions presenting useful results. The system enabled to verify that the majority of occurrences were concentrate in a few events that could be avoided. The developed system allowed automatic knowledge extraction, enabling report generation with strategies for quality improvement.
publishDate 2011
dc.date.none.fl_str_mv 2011
2011-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1822/14342
url http://hdl.handle.net/1822/14342
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1386-5056
10.1016/j.ijmedinf.2011.06.005
21783408
http://www.ijmijournal.com/
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799133109920202752