Combined effects of ocean acidification and low temperature on two range expanding hermatypic corals: Acropora solitaryenis and Porites heronensis

Detalhes bibliográficos
Autor(a) principal: Lugué, Klervi
Data de Publicação: 2020
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.1/15351
Resumo: A recent poleward shift of hermatypic corals’ distribution has been reported and was attributed to the increase in sea temperature since the pre-industrial revolution. Ocean acidification and predicted increasing variability of sea surface temperatures, may together limit this shift in the future. The objective of this study was to investigate whether a tipping point exists in the physiological and metabolic responses of Acropora solitaryensis and Porites heronensis, to CO2, under average winter temperature and under cold event temperature (cold stress; -4°C decrease).We studied the effects of increased partial pressures of CO2 (pCO2) from 294 ppm to 5018 ppm, on a set of metabolic parameters. The light and dark calcification, skeletal growth rate, chlorophyll and protein concentrations decreased linearly as a function of increasing partial pCO2 in A. solitaryensis. In comparison only the dark calcification and skeletal growth rate decreased linearly as a function of increasing partial pCO2 in P. heronensis. For both species, the cold stress acted as an additional stress to the pCO2 exposure, except for the respiration in P. heronensis. No physiological tipping point has been identified, beyond which these coral species were no longer capable of carrying out the functions necessary to their survival. The lack of a clear tipping point, as well as the emergence of potential ‘ecological winners’, here P. heronensis, in the face of decreasing pH and cold temperature stress, indicate that in the coming decades the species composition of coral reefs is likely to slowly change, to a new composition in which surviving in marginal high latitudes are those that show the required potential for adaptation. Our study highlights the substantial advantages of the regression method to predict the impacts of ocean acidification. Resolving high resolution relationships between metabolism and pCO2 could greatly improve the accuracy of models describing the effects of future ocean acidification on calcifying organisms and marine ecosystems.
id RCAP_bc1897b8b64ba7ff100d40481026942c
oai_identifier_str oai:sapientia.ualg.pt:10400.1/15351
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Combined effects of ocean acidification and low temperature on two range expanding hermatypic corals: Acropora solitaryenis and Porites heronensisCorais hermatypicAlterações climáticasAcidificação oceânicaStress frioJapãoA recent poleward shift of hermatypic corals’ distribution has been reported and was attributed to the increase in sea temperature since the pre-industrial revolution. Ocean acidification and predicted increasing variability of sea surface temperatures, may together limit this shift in the future. The objective of this study was to investigate whether a tipping point exists in the physiological and metabolic responses of Acropora solitaryensis and Porites heronensis, to CO2, under average winter temperature and under cold event temperature (cold stress; -4°C decrease).We studied the effects of increased partial pressures of CO2 (pCO2) from 294 ppm to 5018 ppm, on a set of metabolic parameters. The light and dark calcification, skeletal growth rate, chlorophyll and protein concentrations decreased linearly as a function of increasing partial pCO2 in A. solitaryensis. In comparison only the dark calcification and skeletal growth rate decreased linearly as a function of increasing partial pCO2 in P. heronensis. For both species, the cold stress acted as an additional stress to the pCO2 exposure, except for the respiration in P. heronensis. No physiological tipping point has been identified, beyond which these coral species were no longer capable of carrying out the functions necessary to their survival. The lack of a clear tipping point, as well as the emergence of potential ‘ecological winners’, here P. heronensis, in the face of decreasing pH and cold temperature stress, indicate that in the coming decades the species composition of coral reefs is likely to slowly change, to a new composition in which surviving in marginal high latitudes are those that show the required potential for adaptation. Our study highlights the substantial advantages of the regression method to predict the impacts of ocean acidification. Resolving high resolution relationships between metabolism and pCO2 could greatly improve the accuracy of models describing the effects of future ocean acidification on calcifying organisms and marine ecosystems.Santos, RuiAgostini, SylvainSapientiaLugué, Klervi2021-04-08T15:44:51Z2020-12-102020-12-10T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10400.1/15351enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-11-29T10:37:21Zoai:sapientia.ualg.pt:10400.1/15351Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-11-29T10:37:21Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Combined effects of ocean acidification and low temperature on two range expanding hermatypic corals: Acropora solitaryenis and Porites heronensis
title Combined effects of ocean acidification and low temperature on two range expanding hermatypic corals: Acropora solitaryenis and Porites heronensis
spellingShingle Combined effects of ocean acidification and low temperature on two range expanding hermatypic corals: Acropora solitaryenis and Porites heronensis
Lugué, Klervi
Corais hermatypic
Alterações climáticas
Acidificação oceânica
Stress frio
Japão
title_short Combined effects of ocean acidification and low temperature on two range expanding hermatypic corals: Acropora solitaryenis and Porites heronensis
title_full Combined effects of ocean acidification and low temperature on two range expanding hermatypic corals: Acropora solitaryenis and Porites heronensis
title_fullStr Combined effects of ocean acidification and low temperature on two range expanding hermatypic corals: Acropora solitaryenis and Porites heronensis
title_full_unstemmed Combined effects of ocean acidification and low temperature on two range expanding hermatypic corals: Acropora solitaryenis and Porites heronensis
title_sort Combined effects of ocean acidification and low temperature on two range expanding hermatypic corals: Acropora solitaryenis and Porites heronensis
author Lugué, Klervi
author_facet Lugué, Klervi
author_role author
dc.contributor.none.fl_str_mv Santos, Rui
Agostini, Sylvain
Sapientia
dc.contributor.author.fl_str_mv Lugué, Klervi
dc.subject.por.fl_str_mv Corais hermatypic
Alterações climáticas
Acidificação oceânica
Stress frio
Japão
topic Corais hermatypic
Alterações climáticas
Acidificação oceânica
Stress frio
Japão
description A recent poleward shift of hermatypic corals’ distribution has been reported and was attributed to the increase in sea temperature since the pre-industrial revolution. Ocean acidification and predicted increasing variability of sea surface temperatures, may together limit this shift in the future. The objective of this study was to investigate whether a tipping point exists in the physiological and metabolic responses of Acropora solitaryensis and Porites heronensis, to CO2, under average winter temperature and under cold event temperature (cold stress; -4°C decrease).We studied the effects of increased partial pressures of CO2 (pCO2) from 294 ppm to 5018 ppm, on a set of metabolic parameters. The light and dark calcification, skeletal growth rate, chlorophyll and protein concentrations decreased linearly as a function of increasing partial pCO2 in A. solitaryensis. In comparison only the dark calcification and skeletal growth rate decreased linearly as a function of increasing partial pCO2 in P. heronensis. For both species, the cold stress acted as an additional stress to the pCO2 exposure, except for the respiration in P. heronensis. No physiological tipping point has been identified, beyond which these coral species were no longer capable of carrying out the functions necessary to their survival. The lack of a clear tipping point, as well as the emergence of potential ‘ecological winners’, here P. heronensis, in the face of decreasing pH and cold temperature stress, indicate that in the coming decades the species composition of coral reefs is likely to slowly change, to a new composition in which surviving in marginal high latitudes are those that show the required potential for adaptation. Our study highlights the substantial advantages of the regression method to predict the impacts of ocean acidification. Resolving high resolution relationships between metabolism and pCO2 could greatly improve the accuracy of models describing the effects of future ocean acidification on calcifying organisms and marine ecosystems.
publishDate 2020
dc.date.none.fl_str_mv 2020-12-10
2020-12-10T00:00:00Z
2021-04-08T15:44:51Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.1/15351
url http://hdl.handle.net/10400.1/15351
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv mluisa.alvim@gmail.com
_version_ 1817549760354058240