Deep reinforcement learning for investing: A quantamental approach for portfolio management

Detalhes bibliográficos
Autor(a) principal: Maltêz, Fábio Alexandre Afonso
Data de Publicação: 2022
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10071/26849
Resumo: The world of investments affects us all. The way surplus capital is allocated by ourselves or investment funds can determine how we eat, innovate and even educate kids. Portfolio management is an integral albeit challenging process in this task (Leković, 2021). It entails managing a basket of financial assets to maximize the returns per unit of risk, considering all the micro and macro economical, societal, political and environmental complex causal relations. This study aims to evaluate how a machine learning technique called deep reinforcement learning (DRL) can improve the activity of portfolio management. It also has a second goal of understanding if financial fundamental features (i.e., revenue, debt, assets, cash flow) improve the model performance. After conducting a literature review to establish the current state-of-the-art, the CRISP-DM method was followed: 1) Business understanding; 2) Data understanding; 3) Data preparation – two datasets were prepared, one with market only features (i.e., close price, daily volume traded) and another with market plus fundamental features; 4) Modeling – Advantage Actor-Critic (A2C), Deep Deterministic Policy Gradient (DDPG) and Twin-delayed DDPG (TD3) DRL models were optimized on both datasets; 5) Evaluation. On average, models had the same sharpe ratio performance in both datasets – average sharpe ratio of 0.35 vs 0.30 for the baseline, in the test set. DRL models outperformed traditional portfolio optimization techniques and financial fundamental features improved model robustness and consistency. Hence, supporting the use of both DRL models and quantamental investment strategies in portfolio management.
id RCAP_bc39299557bbeba762b465759c2e08fe
oai_identifier_str oai:repositorio.iscte-iul.pt:10071/26849
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Deep reinforcement learning for investing: A quantamental approach for portfolio managementDeep reinforcement learningInvestmentsPortfolio managementQuantitative financeQuantamental investment strategiesAprendizagem por reforço profundaInvestimentosGestão de portfólioFinanças quantitativasEstratégias de investimentos quantamentaisThe world of investments affects us all. The way surplus capital is allocated by ourselves or investment funds can determine how we eat, innovate and even educate kids. Portfolio management is an integral albeit challenging process in this task (Leković, 2021). It entails managing a basket of financial assets to maximize the returns per unit of risk, considering all the micro and macro economical, societal, political and environmental complex causal relations. This study aims to evaluate how a machine learning technique called deep reinforcement learning (DRL) can improve the activity of portfolio management. It also has a second goal of understanding if financial fundamental features (i.e., revenue, debt, assets, cash flow) improve the model performance. After conducting a literature review to establish the current state-of-the-art, the CRISP-DM method was followed: 1) Business understanding; 2) Data understanding; 3) Data preparation – two datasets were prepared, one with market only features (i.e., close price, daily volume traded) and another with market plus fundamental features; 4) Modeling – Advantage Actor-Critic (A2C), Deep Deterministic Policy Gradient (DDPG) and Twin-delayed DDPG (TD3) DRL models were optimized on both datasets; 5) Evaluation. On average, models had the same sharpe ratio performance in both datasets – average sharpe ratio of 0.35 vs 0.30 for the baseline, in the test set. DRL models outperformed traditional portfolio optimization techniques and financial fundamental features improved model robustness and consistency. Hence, supporting the use of both DRL models and quantamental investment strategies in portfolio management.Todos somos afetados pelo mundo dos investimentos. A forma como o excedente de capital é alocado tanto por nós como por fundos de investimentos determina a forma como comemos, inovamos e até mesmo como fornecemos educação às crianças. Gestão de portfólio é uma tarefa essencial e desafiadora neste processo (Leković, 2021). Envolve gerir um conjunto de ativos financeiros com o objetivo de maximizar os retornos por unidade de risco, tendo em consideração todas as relações complexas entre fatores macro e microeconómicos, sociais, políticos e ambientais. Este estudo pretende avaliar de que forma a técnica de machine learning intitulada de Aprendizagem por Reforço Profunda (ARP) consegue melhorar a tarefa de gestão de portfólios. Também tem um segundo objetivo de entender se variáveis relacionadas com a performance financeira de uma empresa (i.e., vendas, passivos, ativos, fluxos de caixa) melhoram a performance do modelo. Após o estado-de-arte ter sido definido com a revisão de literatura, utilizou-se o método CRISP-DM da seguinte forma: 1) Entendimento do negócio; 2) Entendimento dos dados; 3) Preparação dos dados – dois conjuntos de dados foram preparados, um apenas com variáveis de mercado (i.e., preço de fecho, volume transacionado) e o outro com variáveis de mercado mais variáveis de performance financeira; 4) Modelagem – usou-se os modelos Advantage Actor-Critic (A2C), Deep Deterministic Policy Gradient (DDPG) e Twin-delayed DDPG (TD3) em ambos os conjuntos de dados; 5) Avaliação. Em média, os modelos apresentaram o mesmo índice sharpe nos dois conjuntos de dados – média de 0.35 vs 0.30 para o modelo base, no conjunto de teste. Os modelos ARP apresentaram uma melhor performance do que os modelos tradicionais de otimização de portfólios e a utilização de variáveis de performance financeira melhoraram a robustez e consistência dos modelos. Tais conclusões suportam o uso de modelos ARP e de estratégias de investimentos quantamentais na gestão de portfólios.2022-12-28T14:41:20Z2022-12-05T00:00:00Z2022-12-052022-10info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10071/26849TID:203130901engMaltêz, Fábio Alexandre Afonsoinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-09T17:54:46Zoai:repositorio.iscte-iul.pt:10071/26849Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T22:27:45.165850Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Deep reinforcement learning for investing: A quantamental approach for portfolio management
title Deep reinforcement learning for investing: A quantamental approach for portfolio management
spellingShingle Deep reinforcement learning for investing: A quantamental approach for portfolio management
Maltêz, Fábio Alexandre Afonso
Deep reinforcement learning
Investments
Portfolio management
Quantitative finance
Quantamental investment strategies
Aprendizagem por reforço profunda
Investimentos
Gestão de portfólio
Finanças quantitativas
Estratégias de investimentos quantamentais
title_short Deep reinforcement learning for investing: A quantamental approach for portfolio management
title_full Deep reinforcement learning for investing: A quantamental approach for portfolio management
title_fullStr Deep reinforcement learning for investing: A quantamental approach for portfolio management
title_full_unstemmed Deep reinforcement learning for investing: A quantamental approach for portfolio management
title_sort Deep reinforcement learning for investing: A quantamental approach for portfolio management
author Maltêz, Fábio Alexandre Afonso
author_facet Maltêz, Fábio Alexandre Afonso
author_role author
dc.contributor.author.fl_str_mv Maltêz, Fábio Alexandre Afonso
dc.subject.por.fl_str_mv Deep reinforcement learning
Investments
Portfolio management
Quantitative finance
Quantamental investment strategies
Aprendizagem por reforço profunda
Investimentos
Gestão de portfólio
Finanças quantitativas
Estratégias de investimentos quantamentais
topic Deep reinforcement learning
Investments
Portfolio management
Quantitative finance
Quantamental investment strategies
Aprendizagem por reforço profunda
Investimentos
Gestão de portfólio
Finanças quantitativas
Estratégias de investimentos quantamentais
description The world of investments affects us all. The way surplus capital is allocated by ourselves or investment funds can determine how we eat, innovate and even educate kids. Portfolio management is an integral albeit challenging process in this task (Leković, 2021). It entails managing a basket of financial assets to maximize the returns per unit of risk, considering all the micro and macro economical, societal, political and environmental complex causal relations. This study aims to evaluate how a machine learning technique called deep reinforcement learning (DRL) can improve the activity of portfolio management. It also has a second goal of understanding if financial fundamental features (i.e., revenue, debt, assets, cash flow) improve the model performance. After conducting a literature review to establish the current state-of-the-art, the CRISP-DM method was followed: 1) Business understanding; 2) Data understanding; 3) Data preparation – two datasets were prepared, one with market only features (i.e., close price, daily volume traded) and another with market plus fundamental features; 4) Modeling – Advantage Actor-Critic (A2C), Deep Deterministic Policy Gradient (DDPG) and Twin-delayed DDPG (TD3) DRL models were optimized on both datasets; 5) Evaluation. On average, models had the same sharpe ratio performance in both datasets – average sharpe ratio of 0.35 vs 0.30 for the baseline, in the test set. DRL models outperformed traditional portfolio optimization techniques and financial fundamental features improved model robustness and consistency. Hence, supporting the use of both DRL models and quantamental investment strategies in portfolio management.
publishDate 2022
dc.date.none.fl_str_mv 2022-12-28T14:41:20Z
2022-12-05T00:00:00Z
2022-12-05
2022-10
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10071/26849
TID:203130901
url http://hdl.handle.net/10071/26849
identifier_str_mv TID:203130901
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799134840362106880