Deep reinforcement learning for investing: A quantamental approach for portfolio management
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10071/26849 |
Resumo: | The world of investments affects us all. The way surplus capital is allocated by ourselves or investment funds can determine how we eat, innovate and even educate kids. Portfolio management is an integral albeit challenging process in this task (Leković, 2021). It entails managing a basket of financial assets to maximize the returns per unit of risk, considering all the micro and macro economical, societal, political and environmental complex causal relations. This study aims to evaluate how a machine learning technique called deep reinforcement learning (DRL) can improve the activity of portfolio management. It also has a second goal of understanding if financial fundamental features (i.e., revenue, debt, assets, cash flow) improve the model performance. After conducting a literature review to establish the current state-of-the-art, the CRISP-DM method was followed: 1) Business understanding; 2) Data understanding; 3) Data preparation – two datasets were prepared, one with market only features (i.e., close price, daily volume traded) and another with market plus fundamental features; 4) Modeling – Advantage Actor-Critic (A2C), Deep Deterministic Policy Gradient (DDPG) and Twin-delayed DDPG (TD3) DRL models were optimized on both datasets; 5) Evaluation. On average, models had the same sharpe ratio performance in both datasets – average sharpe ratio of 0.35 vs 0.30 for the baseline, in the test set. DRL models outperformed traditional portfolio optimization techniques and financial fundamental features improved model robustness and consistency. Hence, supporting the use of both DRL models and quantamental investment strategies in portfolio management. |
id |
RCAP_bc39299557bbeba762b465759c2e08fe |
---|---|
oai_identifier_str |
oai:repositorio.iscte-iul.pt:10071/26849 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Deep reinforcement learning for investing: A quantamental approach for portfolio managementDeep reinforcement learningInvestmentsPortfolio managementQuantitative financeQuantamental investment strategiesAprendizagem por reforço profundaInvestimentosGestão de portfólioFinanças quantitativasEstratégias de investimentos quantamentaisThe world of investments affects us all. The way surplus capital is allocated by ourselves or investment funds can determine how we eat, innovate and even educate kids. Portfolio management is an integral albeit challenging process in this task (Leković, 2021). It entails managing a basket of financial assets to maximize the returns per unit of risk, considering all the micro and macro economical, societal, political and environmental complex causal relations. This study aims to evaluate how a machine learning technique called deep reinforcement learning (DRL) can improve the activity of portfolio management. It also has a second goal of understanding if financial fundamental features (i.e., revenue, debt, assets, cash flow) improve the model performance. After conducting a literature review to establish the current state-of-the-art, the CRISP-DM method was followed: 1) Business understanding; 2) Data understanding; 3) Data preparation – two datasets were prepared, one with market only features (i.e., close price, daily volume traded) and another with market plus fundamental features; 4) Modeling – Advantage Actor-Critic (A2C), Deep Deterministic Policy Gradient (DDPG) and Twin-delayed DDPG (TD3) DRL models were optimized on both datasets; 5) Evaluation. On average, models had the same sharpe ratio performance in both datasets – average sharpe ratio of 0.35 vs 0.30 for the baseline, in the test set. DRL models outperformed traditional portfolio optimization techniques and financial fundamental features improved model robustness and consistency. Hence, supporting the use of both DRL models and quantamental investment strategies in portfolio management.Todos somos afetados pelo mundo dos investimentos. A forma como o excedente de capital é alocado tanto por nós como por fundos de investimentos determina a forma como comemos, inovamos e até mesmo como fornecemos educação às crianças. Gestão de portfólio é uma tarefa essencial e desafiadora neste processo (Leković, 2021). Envolve gerir um conjunto de ativos financeiros com o objetivo de maximizar os retornos por unidade de risco, tendo em consideração todas as relações complexas entre fatores macro e microeconómicos, sociais, políticos e ambientais. Este estudo pretende avaliar de que forma a técnica de machine learning intitulada de Aprendizagem por Reforço Profunda (ARP) consegue melhorar a tarefa de gestão de portfólios. Também tem um segundo objetivo de entender se variáveis relacionadas com a performance financeira de uma empresa (i.e., vendas, passivos, ativos, fluxos de caixa) melhoram a performance do modelo. Após o estado-de-arte ter sido definido com a revisão de literatura, utilizou-se o método CRISP-DM da seguinte forma: 1) Entendimento do negócio; 2) Entendimento dos dados; 3) Preparação dos dados – dois conjuntos de dados foram preparados, um apenas com variáveis de mercado (i.e., preço de fecho, volume transacionado) e o outro com variáveis de mercado mais variáveis de performance financeira; 4) Modelagem – usou-se os modelos Advantage Actor-Critic (A2C), Deep Deterministic Policy Gradient (DDPG) e Twin-delayed DDPG (TD3) em ambos os conjuntos de dados; 5) Avaliação. Em média, os modelos apresentaram o mesmo índice sharpe nos dois conjuntos de dados – média de 0.35 vs 0.30 para o modelo base, no conjunto de teste. Os modelos ARP apresentaram uma melhor performance do que os modelos tradicionais de otimização de portfólios e a utilização de variáveis de performance financeira melhoraram a robustez e consistência dos modelos. Tais conclusões suportam o uso de modelos ARP e de estratégias de investimentos quantamentais na gestão de portfólios.2022-12-28T14:41:20Z2022-12-05T00:00:00Z2022-12-052022-10info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10071/26849TID:203130901engMaltêz, Fábio Alexandre Afonsoinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-09T17:54:46Zoai:repositorio.iscte-iul.pt:10071/26849Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T22:27:45.165850Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Deep reinforcement learning for investing: A quantamental approach for portfolio management |
title |
Deep reinforcement learning for investing: A quantamental approach for portfolio management |
spellingShingle |
Deep reinforcement learning for investing: A quantamental approach for portfolio management Maltêz, Fábio Alexandre Afonso Deep reinforcement learning Investments Portfolio management Quantitative finance Quantamental investment strategies Aprendizagem por reforço profunda Investimentos Gestão de portfólio Finanças quantitativas Estratégias de investimentos quantamentais |
title_short |
Deep reinforcement learning for investing: A quantamental approach for portfolio management |
title_full |
Deep reinforcement learning for investing: A quantamental approach for portfolio management |
title_fullStr |
Deep reinforcement learning for investing: A quantamental approach for portfolio management |
title_full_unstemmed |
Deep reinforcement learning for investing: A quantamental approach for portfolio management |
title_sort |
Deep reinforcement learning for investing: A quantamental approach for portfolio management |
author |
Maltêz, Fábio Alexandre Afonso |
author_facet |
Maltêz, Fábio Alexandre Afonso |
author_role |
author |
dc.contributor.author.fl_str_mv |
Maltêz, Fábio Alexandre Afonso |
dc.subject.por.fl_str_mv |
Deep reinforcement learning Investments Portfolio management Quantitative finance Quantamental investment strategies Aprendizagem por reforço profunda Investimentos Gestão de portfólio Finanças quantitativas Estratégias de investimentos quantamentais |
topic |
Deep reinforcement learning Investments Portfolio management Quantitative finance Quantamental investment strategies Aprendizagem por reforço profunda Investimentos Gestão de portfólio Finanças quantitativas Estratégias de investimentos quantamentais |
description |
The world of investments affects us all. The way surplus capital is allocated by ourselves or investment funds can determine how we eat, innovate and even educate kids. Portfolio management is an integral albeit challenging process in this task (Leković, 2021). It entails managing a basket of financial assets to maximize the returns per unit of risk, considering all the micro and macro economical, societal, political and environmental complex causal relations. This study aims to evaluate how a machine learning technique called deep reinforcement learning (DRL) can improve the activity of portfolio management. It also has a second goal of understanding if financial fundamental features (i.e., revenue, debt, assets, cash flow) improve the model performance. After conducting a literature review to establish the current state-of-the-art, the CRISP-DM method was followed: 1) Business understanding; 2) Data understanding; 3) Data preparation – two datasets were prepared, one with market only features (i.e., close price, daily volume traded) and another with market plus fundamental features; 4) Modeling – Advantage Actor-Critic (A2C), Deep Deterministic Policy Gradient (DDPG) and Twin-delayed DDPG (TD3) DRL models were optimized on both datasets; 5) Evaluation. On average, models had the same sharpe ratio performance in both datasets – average sharpe ratio of 0.35 vs 0.30 for the baseline, in the test set. DRL models outperformed traditional portfolio optimization techniques and financial fundamental features improved model robustness and consistency. Hence, supporting the use of both DRL models and quantamental investment strategies in portfolio management. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-12-28T14:41:20Z 2022-12-05T00:00:00Z 2022-12-05 2022-10 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10071/26849 TID:203130901 |
url |
http://hdl.handle.net/10071/26849 |
identifier_str_mv |
TID:203130901 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799134840362106880 |