Developing reliability metrics and validation tools for datasets with deep linguistic information

Detalhes bibliográficos
Autor(a) principal: Castro, Sérgio Ricardo de
Data de Publicação: 2011
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10451/13908
Resumo: The purpose of this dissertation is to propose a reliability metric and respective validation tools for corpora annotated with deep linguistic information. The annotation of corpus with deep linguistic information is a complex task, and therefore is aided by a computational grammar. This grammar generates all the possible grammatical representations for sentences. The human annotators select the most correct analysis for each sentence, or reject it if no suitable representation is achieved. This task is repeated by two human annotators under a double-blind annotation scheme and the resulting annotations are adjudicated by a third annotator. This process should result in reliable datasets since the main purpose of this dataset is to be the training and validation data for other natural language processing tools. Therefore it is necessary to have a metric that assures such reliability and quality. In most cases, the metrics uses for shallow annotation or parser evaluation have been used for this same task. However the increased complexity demands a better granularity in order to properly measure the reliability of the dataset. With that in mind, I suggest the usage of a metric based on the Cohen’s Kappa metric that instead of considering the assignment of tags to parts of the sentence, considers the decision at the level of the semantic discriminants, the most granular unit available for this task. By comparing each annotator’s options it is possible to evaluate with a high degree of granularity how close their analysis were for any given sentence. An application was developed that allowed the application of this model to the data resulting from the annotation process which was aided by the LOGON framework. The output of this application not only has the metric for the annotated dataset, but some information related with divergent decision with the intent of aiding the adjudication process.
id RCAP_bc3d80e9ebbcf5285fe54d101456e13e
oai_identifier_str oai:repositorio.ul.pt:10451/13908
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Developing reliability metrics and validation tools for datasets with deep linguistic informationNatural language processingcorpora annotation with deep linguistic informationinter-annotator agreementThe purpose of this dissertation is to propose a reliability metric and respective validation tools for corpora annotated with deep linguistic information. The annotation of corpus with deep linguistic information is a complex task, and therefore is aided by a computational grammar. This grammar generates all the possible grammatical representations for sentences. The human annotators select the most correct analysis for each sentence, or reject it if no suitable representation is achieved. This task is repeated by two human annotators under a double-blind annotation scheme and the resulting annotations are adjudicated by a third annotator. This process should result in reliable datasets since the main purpose of this dataset is to be the training and validation data for other natural language processing tools. Therefore it is necessary to have a metric that assures such reliability and quality. In most cases, the metrics uses for shallow annotation or parser evaluation have been used for this same task. However the increased complexity demands a better granularity in order to properly measure the reliability of the dataset. With that in mind, I suggest the usage of a metric based on the Cohen’s Kappa metric that instead of considering the assignment of tags to parts of the sentence, considers the decision at the level of the semantic discriminants, the most granular unit available for this task. By comparing each annotator’s options it is possible to evaluate with a high degree of granularity how close their analysis were for any given sentence. An application was developed that allowed the application of this model to the data resulting from the annotation process which was aided by the LOGON framework. The output of this application not only has the metric for the annotated dataset, but some information related with divergent decision with the intent of aiding the adjudication process.Branco, AntónioRepositório da Universidade de LisboaCastro, Sérgio Ricardo de2011-12-19T10:53:47Z20112011-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10451/13908enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-08T15:59:22Zoai:repositorio.ul.pt:10451/13908Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T21:35:50.480297Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Developing reliability metrics and validation tools for datasets with deep linguistic information
title Developing reliability metrics and validation tools for datasets with deep linguistic information
spellingShingle Developing reliability metrics and validation tools for datasets with deep linguistic information
Castro, Sérgio Ricardo de
Natural language processing
corpora annotation with deep linguistic information
inter-annotator agreement
title_short Developing reliability metrics and validation tools for datasets with deep linguistic information
title_full Developing reliability metrics and validation tools for datasets with deep linguistic information
title_fullStr Developing reliability metrics and validation tools for datasets with deep linguistic information
title_full_unstemmed Developing reliability metrics and validation tools for datasets with deep linguistic information
title_sort Developing reliability metrics and validation tools for datasets with deep linguistic information
author Castro, Sérgio Ricardo de
author_facet Castro, Sérgio Ricardo de
author_role author
dc.contributor.none.fl_str_mv Branco, António
Repositório da Universidade de Lisboa
dc.contributor.author.fl_str_mv Castro, Sérgio Ricardo de
dc.subject.por.fl_str_mv Natural language processing
corpora annotation with deep linguistic information
inter-annotator agreement
topic Natural language processing
corpora annotation with deep linguistic information
inter-annotator agreement
description The purpose of this dissertation is to propose a reliability metric and respective validation tools for corpora annotated with deep linguistic information. The annotation of corpus with deep linguistic information is a complex task, and therefore is aided by a computational grammar. This grammar generates all the possible grammatical representations for sentences. The human annotators select the most correct analysis for each sentence, or reject it if no suitable representation is achieved. This task is repeated by two human annotators under a double-blind annotation scheme and the resulting annotations are adjudicated by a third annotator. This process should result in reliable datasets since the main purpose of this dataset is to be the training and validation data for other natural language processing tools. Therefore it is necessary to have a metric that assures such reliability and quality. In most cases, the metrics uses for shallow annotation or parser evaluation have been used for this same task. However the increased complexity demands a better granularity in order to properly measure the reliability of the dataset. With that in mind, I suggest the usage of a metric based on the Cohen’s Kappa metric that instead of considering the assignment of tags to parts of the sentence, considers the decision at the level of the semantic discriminants, the most granular unit available for this task. By comparing each annotator’s options it is possible to evaluate with a high degree of granularity how close their analysis were for any given sentence. An application was developed that allowed the application of this model to the data resulting from the annotation process which was aided by the LOGON framework. The output of this application not only has the metric for the annotated dataset, but some information related with divergent decision with the intent of aiding the adjudication process.
publishDate 2011
dc.date.none.fl_str_mv 2011-12-19T10:53:47Z
2011
2011-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10451/13908
url http://hdl.handle.net/10451/13908
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799134257548886016